【題目】已知函數(shù),( ).

(1)若, ,求函數(shù)的單調(diào)增區(qū)間;

(2)若時(shí),不等式上恒成立,求實(shí)數(shù)的取值范圍;

(3)當(dāng) 時(shí),記函數(shù)的導(dǎo)函數(shù)的兩個(gè)零點(diǎn)是),求證: .

【答案】(1), ;(2);(3)詳見解析.

【解析】試題分析:

(1)利用導(dǎo)函數(shù)大于零可得函數(shù)的單調(diào)增區(qū)間為, .

(2)不等式恒成立轉(zhuǎn)化為在區(qū)間上恒成立,構(gòu)造新函數(shù),結(jié)合題意討論其性質(zhì)可得

(3)由題意可得),由根與系數(shù)的關(guān)系: .由題意有

,構(gòu)造新函數(shù).利用函數(shù)的性質(zhì)可得.

試題解析:(1)由題意: , 時(shí),

所以

,得,因?yàn)?/span>,所以

所以的單調(diào)增區(qū)間為

(2)時(shí),

不等式上恒成立即為: 在區(qū)間上恒成立

,則,令得: ,

因?yàn)?/span>時(shí), , 時(shí), ,

所以上單調(diào)遞減,在上單調(diào)遞增

所以,所以

(3)方法一:因?yàn)?/span>,所以,從而

由題意知, , 是方程的兩個(gè)根,故.

,則,因?yàn)?/span>,所以

,所以, ,且, ).

因?yàn)?/span>,所以, .

.

因?yàn)?/span>,所以單調(diào)遞增,

所以,即.

方法二:因?yàn)?/span>,所以,從而).

由題意知, , 是方程的兩個(gè)根.記,則,

因?yàn)?/span>,所以 ,

所以 ,且上為減函數(shù).

所以.

因?yàn)?/span>,故.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某批產(chǎn)品中,有放回地抽取產(chǎn)品兩次,每次隨機(jī)抽取1件,假設(shè)事件A:“取出的2件產(chǎn)品中至多有1件是二等品”,其概率P(A)=0.96.

(1)求從該批產(chǎn)品中任取1件是二等品的概率p.

(2)若該批產(chǎn)品共100件,從中無放回抽取2件產(chǎn)品,ξ表示取出的2件產(chǎn)品中二等品的件數(shù).求ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我們用圓的性質(zhì)類比球的性質(zhì)如下:

p:圓心與弦(非直徑)中點(diǎn)的連線垂直于弦; q:球心與小圓截面圓心的連線垂直于截面.

p:與圓心距離相等的兩條弦長相等; q:與球心距離相等的兩個(gè)截面圓的面積相等.

p:圓的周長為Cd(d是圓的直徑); q:球的表面積為Sd2(d是球的直徑).

p:圓的面積為S=R·πd(R,d是圓的半徑與直徑); q:球的體積為V=R·πd2(R,d是球的半徑與直徑).

則上面的四組命題中,其中類比得到的q是真命題的有( )個(gè)

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2015年7月9日21時(shí)15分,臺(tái)風(fēng)“蓮花”在我國廣東省陸豐市甲東鎮(zhèn)沿海登陸,造成165.17萬人受災(zāi), 5.6萬人緊急轉(zhuǎn)移安置,288間房屋倒塌,46.5千公頃農(nóng)田受災(zāi),直接經(jīng)濟(jì)損失12.99億元,距離陸豐市222千米的梅州也受到了臺(tái)風(fēng)的影響,適逢暑假,小明調(diào)查了梅州某小區(qū)的50戶居民由于臺(tái)風(fēng)造成的經(jīng)濟(jì)損失,將收集的數(shù)據(jù)分成, , , 五組,并作出如下頻率分布直方圖(圖1):

(1)試根據(jù)頻率分布直方圖估計(jì)小區(qū)平均每戶居民的平均損失;

(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(2)小明向班級同學(xué)發(fā)出倡議,為該小區(qū)居民捐款,現(xiàn)從損失超過6000元的居民中隨機(jī)

抽出2戶進(jìn)行捐款援助,求抽出的2戶居民損失均超過8000元的概率;

(3)臺(tái)風(fēng)后區(qū)委會(huì)號召該小區(qū)居民為臺(tái)風(fēng)重災(zāi)區(qū)捐款,小明調(diào)查的50戶居民捐款情況如下表,

在圖2表格空白外填寫正確數(shù)字,并說明是否有95%以上的把握認(rèn)為捐款數(shù)額超過或

不超過500元和自身經(jīng)濟(jì)損失是否超過4000元有關(guān)?

經(jīng)濟(jì)損失不超過4000元

經(jīng)濟(jì)損失超過4000元

合計(jì)

捐款超過500元

30

捐款不超過500元

6

合計(jì)

附:臨界值參考公式: , .

0.15

0.10

0.05

/td>

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),(

(1)若,求曲線處的切線方程.

(2)對任意,總存在,使得(其中的導(dǎo)數(shù))成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】十八屆五種全會(huì)公報(bào)指出:努力促進(jìn)人口均衡發(fā)展,堅(jiān)持計(jì)劃生育的基本國策,完善人口發(fā)展戰(zhàn)略,全面實(shí)施一對夫婦可生育兩個(gè)孩子的政策,提高生殖保健、婦幼保健、托兒等公共服務(wù)水平.為了解適齡公務(wù)員對放開生育二胎政策的態(tài)度,某部門隨機(jī)調(diào)查了100位30到40歲的公務(wù)員,得到情況如下表:

男公務(wù)員

女公務(wù)員

生二胎

40

20

不生二胎

20

20

(1)是否有95%以上的把握認(rèn)為“生二胎與性別有關(guān)”,并說明理由;

(2)把以上頻率當(dāng)概率,若從社會(huì)上隨機(jī)抽取3位30到40歲的男公務(wù)員,記其中生二胎的人數(shù)為,求隨機(jī)變量的分布列,數(shù)學(xué)期望.

0.050

0.010

0.001

3.841

6.635

10.828

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠于2016年下半年對生產(chǎn)工藝進(jìn)行了改造(每半年為一個(gè)生產(chǎn)周期),從2016年一年的產(chǎn)品中用隨機(jī)抽樣的方法抽取了容量為50的樣本,用莖葉圖表示(如圖).已知每個(gè)生產(chǎn)周期內(nèi)與其中位數(shù)誤差在±5范圍內(nèi)(含±5)的產(chǎn)品為優(yōu)質(zhì)品,與中位數(shù)誤差在±15范圍內(nèi)(含±15)的產(chǎn)品為合格品(不包括優(yōu)質(zhì)品),與中位數(shù)誤差超過±15的產(chǎn)品為次品.企業(yè)生產(chǎn)一件優(yōu)質(zhì)品可獲利潤20元,生產(chǎn)一件合格品可獲利潤10元,生產(chǎn)一件次品要虧損10元

(Ⅰ)求該企業(yè)2016年一年生產(chǎn)一件產(chǎn)品的利潤為10的概率;

(Ⅱ)是否有95%的把握認(rèn)為“優(yōu)質(zhì)品與生產(chǎn)工藝改造有關(guān)”.

附:

PK2≥k

0.050

0.010

0.001

k

3.841

6.635

10.828

K2=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某校舉行的航天知識競賽中,參與競賽的文科生與理科生人數(shù)之比為,且成績分布在分?jǐn)?shù)在以上(含的同學(xué)獲獎(jiǎng). 按文理科用分層抽樣的方法抽取人的成績作為樣本,得到成績的頻率分布直方圖(見下圖).

(1)填寫下面的列聯(lián)表,能否有超過的把握認(rèn)為獲獎(jiǎng)與學(xué)生的文理科有關(guān)

(2)將上述調(diào)査所得的頻率視為概率,現(xiàn)從參賽學(xué)生中,任意抽取名學(xué)生,獲獎(jiǎng)學(xué)生人數(shù)為,求的分布列及數(shù)學(xué)期望.

文科生

理科生

合計(jì)

獲獎(jiǎng)

不獲獎(jiǎng)

合計(jì)

附表及公式:

,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)設(shè)

①記的導(dǎo)函數(shù)為,求

②若方程有兩個(gè)不同實(shí)根,求實(shí)數(shù)的取值范圍;

(2)若在上存在一點(diǎn)使成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案