分析 (1)欲證SB⊥BC,需證明BC⊥平面SAB,根據(jù)直線與平面垂直的判定定理可知只需證BC與平面SAB內(nèi)兩相交直線垂直,而BC⊥BA,SA⊥BC,又SA∩BA=A,滿足定理所需條件.
(2)以B為原點,BF為x軸,BA為y軸,過B作平面ABCDE的垂線為z軸,建立空間直角坐標系,利用向量法能求出點E到平面SCD的距離.
(3)求出平面SCB的法向量和平面SCA的法向量,利用向量法能求出平面SCB與平面SCA的夾角的余弦值.
解答 證明:(1)∵SA⊥底面ABCDE,SA=AB=AE=2,BC=DE=$\sqrt{3}$,∠BAE=∠BCD=∠CDE=120°,
∴△ABE為等腰三角形,∠BAE=120°,
∴∠ABE=30°,又∠FBE=60°,
∴∠ABC=90°,∴BC⊥BA
∵SA⊥底面ABCDE,BC?底面ABCDE,
∴SA⊥BC,又SA∩BA=A,
∴BC⊥平面SAB.
∵SB?平面SAB,∴SB⊥BC.
解:(2)連接BE,延長BC、ED交于點F,則∠DCF=∠CDF=60°,
∴△CDF為正三角形,∴CF=DF.
又BC=DE,∴BF=EF.因此,△BFE為正三角形,
∴∠FBE=∠FCD=60°,∴BE∥CD
∵SA⊥底面ABCDE,SA=AB=AE=2,
∴SB=2$\sqrt{2}$,同理SE=2$\sqrt{2}$,
又∠BAE=120°,∴BE=2$\sqrt{3}$,
以B為原點,BF為x軸,BA為y軸,過B作平面ABCDE的垂線為z軸,建立空間直角坐標系,
則E($\sqrt{3}$,3,0),S(0,2,2),C($\sqrt{3},0,0$),D($\frac{3\sqrt{3}}{2}$,$\frac{3}{2}$,0),
$\overrightarrow{SE}$=($\sqrt{3}$,1,-2),$\overrightarrow{SC}$=($\sqrt{3}$,-2,-2),$\overrightarrow{SD}$=($\frac{3\sqrt{3}}{2}$,-$\frac{1}{2}$,-2),
設(shè)平面SCD的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{SC}=\sqrt{3}x-2y-2z=0}\\{\overrightarrow{n}•\overrightarrow{SD}=\frac{3\sqrt{3}}{2}x-\frac{1}{2}y-2z=0}\end{array}\right.$,取x=2$\sqrt{3}$,得$\overrightarrow{n}$=(2$\sqrt{3}$,-2,5),
∴點E到平面SCD的距離d=$\frac{|\overrightarrow{SE}•\overrightarrow{n}|}{|\overrightarrow{n}|}$=$\frac{6\sqrt{41}}{41}$.
(3)$\overrightarrow{BS}$=(0,2,2),$\overrightarrow{SC}$=($\sqrt{3}$,-2,-2),A(0,2,0),$\overrightarrow{AS}$=(0,0,2),
設(shè)平面SCB的法向量$\overrightarrow{m}$=(a,b,c),
則$\left\{\begin{array}{l}{\overrightarrow{BS}•\overrightarrow{m}=2b+2c=0}\\{\overrightarrow{SC}•\overrightarrow{m}=\sqrt{3}a-2b-2c=0}\end{array}\right.$,取b=1,得$\overrightarrow{m}$=(0,1,-1),
設(shè)平面SCA的法向量$\overrightarrow{p}$=(x1,y1,z1),
則$\left\{\begin{array}{l}{\overrightarrow{p}•\overrightarrow{SC}=\sqrt{3}{x}_{1}-2{y}_{1}-2{z}_{1}=0}\\{\overrightarrow{p}•\overrightarrow{AS}=2{z}_{1}=0}\end{array}\right.$,取x1=2,得$\overrightarrow{p}$=(2,$\sqrt{3}$,0),
設(shè)平面SCB與平面SCA的夾角為θ,
則cosθ=$\frac{|\sqrt{3}|}{\sqrt{2}•\sqrt{7}}$=$\frac{\sqrt{42}}{14}$.
∴平面SCB與平面SCA的夾角的余弦值為$\frac{\sqrt{42}}{14}$.
點評 本題考查異面直線垂直的證明,考查點到平面的距離的求法,考查二面角的余弦值的求法,是中檔題,解題時要認真審題,注意向量法的合理運用.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com