已知方程x2-2ax-b2+16=0(a,b∈R).
(1)若a,b分別是一枚骰子擲兩次所得到的點(diǎn)數(shù),求方程有兩個(gè)不同正根的概率;
(2)若a∈[0,6],b∈[0,4],求方程沒(méi)有實(shí)根的概率.
考點(diǎn):幾何概型
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:(1)這是一個(gè)古典概型問(wèn)題,總件數(shù)由分步計(jì)數(shù)原理知是36,滿足條件的事件數(shù)在整理時(shí)要借助于根與系數(shù)之間的關(guān)系,根的判別式,要進(jìn)行討論得到結(jié)果;
(2)本題是一個(gè)幾何概型,試驗(yàn)的全部結(jié)果構(gòu)成區(qū)域Ω={(a,b)|0≤a≤6,0≤b≤4},滿足條件的事件為:B={(a,b)|0≤a≤6,0≤b≤4,a2+b2<16},做出兩者的面積,得到概率.
解答: 解:(1)基本事件(a,b)共有36個(gè),方程有不同正根等價(jià)于
2a>0
16-b2>0
△>0
a>0
-4<b<4
a2+b2>16.

設(shè)“方程有兩個(gè)不同正根”為事件A,則事件A包含的基本事件為(6,1),(6,2),(6,3),(5,1),(5,2),(5,3),(4,1),(4,2),(4,3),(3,3),共10個(gè),
故所求的概率為P(A)=
10
36
=
5
18
.6分
(2)試驗(yàn)的全部結(jié)果構(gòu)成區(qū)域Ω={(a,b)|0≤a≤6,0≤b≤4},其面積為S(Ω)=24,
設(shè)“方程無(wú)實(shí)根”為事件B,則構(gòu)成事件B的區(qū)域?yàn)锽={(a,b)|0≤a≤6,0≤b≤4,a2+b2<16},
其面積為S(B)=
1
4
×π×42=4π,
故所求的概率為P(B)=
24
=
π
6
.12分.
點(diǎn)評(píng):本題考查古典概型和幾何概型,解決古典概型問(wèn)題時(shí),先要判斷該概率模型是不是古典概型,再要找出隨機(jī)事件A包含的基本事件的個(gè)數(shù)和試驗(yàn)中基本事件的總數(shù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={x|ln(1-x)>0},B={x|-1≤x≤1},則A∩B=(  )
A、[-1,0]
B、(-1,0)
C、[-1,0)
D、(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知四邊形ABCD,ABEF都是矩形,M、N分別是對(duì)角線AC和BF的中點(diǎn),則MN與平面BCE的關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=|x2-1|,若0<a<b,f(a)=f(b),則ab2的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等比數(shù)列{an}中,首項(xiàng)a1=2,公比為3,Sn為其前n項(xiàng)和,則S4+a3等于( 。
A、44B、64C、98D、134

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若存在實(shí)數(shù)t,使cos2x+sinx-2t=0成立,則t的范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,已知B=
π
3
,AC=4
3
,D為BC邊上一點(diǎn),若AB=AD,則△ADC的周長(zhǎng)的最大值
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
1
x+2
的大致圖象只能是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC中,cosAcosBcosC的最大值是( 。
A、
3
8
3
B、
1
8
C、1
D、
1
2

查看答案和解析>>

同步練習(xí)冊(cè)答案