6.口袋中有n(n∈N*)個白球,3個紅球.依次從口袋中任取一球,如果取到紅球,那么繼續(xù)取球,且取出的紅球不放回;如果取到白球,就停止取球.記取球的次數(shù)為X.若P(X=2)=$\frac{7}{30}$,則n的值為7.

分析 x=2 說明第一次取出的是紅球,第二次取出的是白球,取球方法數(shù)為A31•An1,所有的取球方法數(shù)An+32,利用P(X=2)=$\frac{7}{30}$,建立方程求出n的值.

解答 解:P(X=2)=$\frac{{A}_{3}^{1}{A}_{n}^{1}}{{A}_{n+3}^{2}}$=$\frac{3n}{(n+3)(n+2)}$=$\frac{7}{30}$,
即7n2-55n+42=0,
即(7n-6)(n-7)=0.
因為n∈N*,所以n=7.
故答案為:7.

點評 本題考查排列數(shù)公式的應(yīng)用,確定隨機變量的取值及取每個值時的概率.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

16.已知a為實數(shù),函數(shù)f(x)=x2-|x2-ax-2|在區(qū)間(-∞,-1)和(2,+∞)上單調(diào)遞增,則a的取值范圍為( 。
A.[1,8]B.[3,8]C.[1,3]D.[-1,8]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.設(shè)f(x)是(-∞,+∞)上的減函數(shù),則不等式f(2)<f($\frac{1}{x}$)的解集是( 。
A.(0,$\frac{1}{2}$)B.(-∞,$\frac{1}{2}$)C.($\frac{1}{2}$,+∞)D.(-∞,0)∪($\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.求下列各式的值:
(1)cos40°sin20°+cos20°sin40°
(2)cos$\frac{π}{8}$•sin$\frac{π}{8}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.設(shè)a>b>c>0,則3a2+$\frac{1}{a(a-b)}$+$\frac{1}{ab}$-6ac+9c2的最小值為( 。
A.2B.4C.2$\sqrt{5}$D.4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.點P在正方形ABCD內(nèi),滿足AP=2BP,CP=3BP,求∠APB的度數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.執(zhí)行如圖所示的程序框圖,則輸出的“S+n”的值為( 。
A.-21B.-20C.-19D.-18

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知集合A={1,2,3,4},則集合B={x•y|x∈A,y∈A}中元素的個數(shù)是( 。
A.8B.9C.10D.12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.如果sin(π+A)=$\frac{1}{2}$,那么cos($\frac{3π}{2}$-A)等于(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步練習冊答案