分析 (1)首先求出函數(shù)的導數(shù),然后根據(jù)導數(shù)與單調(diào)區(qū)間的關系確定函數(shù)的單調(diào)區(qū)間;
(2)利用導數(shù)求出函數(shù)f(x)的值域,可知當a=2時,不合題意;當a≠2時,通過構(gòu)造函數(shù),利用導數(shù)研究函數(shù)的單調(diào)性和極值,根據(jù)兩個函數(shù)極值和最值之間的關系即可求得滿足條件的實數(shù)a的取值范圍.
解答 解:(1)∵g′(x)=2-a-$\frac{2}{x}$,(x>0),
∴當2-a≤0,即a≥2時,g'(x)<0恒成立,g(x)在(0,+∞)上為減函數(shù);
當2-a>0,即a<2時,由g′(x)<0,得0<x<$\frac{2}{2-a}$,由g'(x)>0,得x>$\frac{2}{2-a}$.
∴當a<2時,函數(shù)f(x)的單調(diào)減區(qū)間是(0,$\frac{2}{2-a}$),單調(diào)增區(qū)間是($\frac{2}{2-a}$,+∞);
(2)f′(x)=e1-x-xe1-x=(1-x)e1-x,
當x∈(0,1)時,f′(x)>0,函數(shù)f(x)單調(diào)遞增;
當x∈(1,e]時,f′(x)<0,函數(shù)f(x)單調(diào)遞減.
又∵f(0)=0,f(1)=1,f(e)=e•e1-e>0,
∴函數(shù)f(x)在(0,e]上的值域為(0,1].
當a=2時,不合題意;
當a≠2時,g′(x)=2-a-$\frac{2}{x}$=$\frac{(2-a)x-2}{x}$=$\frac{(2-a)(x-\frac{2}{2-a})}{x}$,x∈(0,e],
當x=$\frac{2}{2-a}$時,g′(x)=0.
由題意得,g(x)在(0,e]上不單調(diào),故0<$\frac{2}{2-a}$<e,即a<2-$\frac{2}{e}$,
此時,當x變化時,g′(x),g(x)的變化情況如下:
x | (0,$\frac{2}{2-a}$) | $\frac{2}{2-a}$ | ($\frac{2}{2-a}$,e] |
g′(x) | - | 0 | + |
g(x) | ↘ | 最小值 | ↗ |
點評 本題主要考查導數(shù)的綜合應用,考查利用導函數(shù)的正負確定函數(shù)的單調(diào)性,會根據(jù)函數(shù)的增減性求出閉區(qū)間上函數(shù)的最值,掌握不等式恒成立時所滿足的條件是解答該題的關鍵,題目設置綜合性較強,難度較大.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 30° | B. | 60° | C. | 90° | D. | 120° |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 函數(shù)F(x)=$\frac{f(x)}{x}$在(0,+∞)上為增函數(shù) | B. | 函數(shù)F (x)=$\frac{f(x)}{x}$在(0,+∞)上為減函數(shù) | ||
C. | 函數(shù)G(x)=xf(x)在(0,+∞)上為增函數(shù) | D. | 函數(shù)G(x)=xf(x)在(0,+∞)上為減函數(shù) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 小前提錯誤 | B. | 結(jié)論錯誤 | C. | 大前提錯誤 | D. | 正確 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | $6\sqrt{2}$ | C. | 12 | D. | $8\sqrt{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com