9.若函數(shù)f(x)在(0,+∞)上可導(dǎo),且滿足f(x)>-xf′(x),則一定有( 。
A.函數(shù)F(x)=$\frac{f(x)}{x}$在(0,+∞)上為增函數(shù)B.函數(shù)F (x)=$\frac{f(x)}{x}$在(0,+∞)上為減函數(shù)
C.函數(shù)G(x)=xf(x)在(0,+∞)上為增函數(shù)D.函數(shù)G(x)=xf(x)在(0,+∞)上為減函數(shù)

分析 令G(x)=xf(x),求出函數(shù)的導(dǎo)數(shù),判斷函數(shù)的單調(diào)性即可.

解答 解:∵f(x)>-xf′(x),(x>0),
∴f(x)+xf′(x)>0,
令G(x)=xf(x),
則G′(x)=f(x)+xf′(x)>0,
∴G(x)=xf(x)在(0,+∞)遞增,
故選:C.

點評 本題考查了函數(shù)的單調(diào)性問題,構(gòu)造函數(shù)G(x)是解題的關(guān)鍵,本題是一道基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.一小袋中有3只紅色、3只白色的乒乓球(其體積、質(zhì)地完成相同),從袋中隨機摸出3個球,
(1)摸出的3個球為白球的概率是多少?
(2)摸出的3個球為2個紅球1個白球的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知直線l1:x+ay-2a-2=0,l2:ax+y-1-a=0.
(1)若l1∥l2,試求a的值;
(2)若l1⊥l2,試求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=xe1-x,g(x)=(2-a)x-2lnx+a-2.
(1)求函數(shù)g(x)的單調(diào)區(qū)間;
(2)若對于?x0∈(0,e],在區(qū)間(0,e]上總存在兩個不同實數(shù)xi(i=1,2),使得f(x0)=g(xi),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,已知PA與圓O相切,P為切點,割線ABC與圓O相切于點B,C,AC=2PA,D為AC的中點.PD的延長線交圓O于E點,證明:
(1)∠ECD=∠EBD;
(2)2DB2=PD•DE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.運行如圖所示的框圖,可知輸出的結(jié)果s為( 。
A.3B.7C.6D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.定積分$\int_0^1{(2x+{e^x})}$dx的值為e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{x}{ln(1+x)}$
(1)當x>0時,證明:f(x)<$\frac{1}{2}$x+1;
(2)當x>-1,且x≠0時,不等式(1+kx)f(x)>1+x成立,求實數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.有4名男生、5名女生,全體排成一行,下列情形各有多少種不同的排法?
(1)甲不在中間也不在兩端;
(2)甲、乙兩人必須排在兩端;
(3)女生互不相鄰.
(4)男生必須相鄰.

查看答案和解析>>

同步練習冊答案