7.已知一個四棱錐的高為3,其底面用斜二測畫法所畫出的水平放置的直觀圖是一個邊長為2的正方形,則此四棱錐的體積為( 。
A.4B.$6\sqrt{2}$C.12D.$8\sqrt{2}$

分析 由題意通過其底面用斜二測畫法所畫出的水平放置的直觀圖是一個邊長為2的正方形,求出四棱錐的底面面積,然后求出四棱錐的體積.

解答 解:一個四棱錐的高為3,其底面用斜二測畫法所畫出的水平放置的直觀圖是一個邊長為2的正方形,
則四棱錐的底面是平行四邊形,一邊長為2,高為4$\sqrt{2}$,四棱錐的底面面積為:8$\sqrt{2}$,
所以四棱錐的體積為:$\frac{1}{3}$×8$\sqrt{2}$×3=8$\sqrt{2}$;
故選:D.

點評 本題是基礎題,在斜二測畫法中,平面圖形的面積與斜二側(cè)水平放置的圖形的面積之比為2 $\sqrt{2}$,是需要牢記的結(jié)論,也是解題的根據(jù).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=xe1-x,g(x)=(2-a)x-2lnx+a-2.
(1)求函數(shù)g(x)的單調(diào)區(qū)間;
(2)若對于?x0∈(0,e],在區(qū)間(0,e]上總存在兩個不同實數(shù)xi(i=1,2),使得f(x0)=g(xi),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{x}{ln(1+x)}$
(1)當x>0時,證明:f(x)<$\frac{1}{2}$x+1;
(2)當x>-1,且x≠0時,不等式(1+kx)f(x)>1+x成立,求實數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知直線y=$\frac{1}{e}$是函數(shù)f(x)=$\frac{ax}{{e}^{x}}$的切線(其中e=2.71828…)
(Ⅰ)求實數(shù)a的值;
(Ⅱ)若對任意的x∈(0,2),都有f(x)<$\frac{m}{2x-{x}^{2}}$成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知動圓過定點R(0,2),且在x軸上截得的線段MN的長為4,直線l:y=kx+t(t>0)交y軸于點Q.
(1)求動圓圓心的軌跡E的方程;
(2)直線l與軌跡E交于A、B兩點,分別以A、B為切點作軌跡E的切線交于點P,若tan∠APB=$\frac{|\overrightarrow{PQ}|•|\overrightarrow{AB}|}{\overrightarrow{PA}•\overrightarrow{PB}}$,試判斷點Q是否為定點,若是,請求出點Q的坐標;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.如圖,⊙O的半徑為 4,線段AB與⊙O相交于點C、D,AC=2,∠BOD=∠A,OB與⊙O相交于點E.
(Ⅰ) 求BD長; 
(Ⅱ)當CE⊥OD時,求證:AO=AD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.有4名男生、5名女生,全體排成一行,下列情形各有多少種不同的排法?
(1)甲不在中間也不在兩端;
(2)甲、乙兩人必須排在兩端;
(3)女生互不相鄰.
(4)男生必須相鄰.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知直線x=$\frac{π}{6}$是函數(shù)f(x)=sin(2x+φ(0<φ<$\frac{π}{2}$)圖象的一條對稱軸.
(1)求函數(shù)f(x)的解析式;          
(2)求函數(shù)f(-x)的單調(diào)增區(qū)間;
(3)求函數(shù)f(x)在區(qū)間[-$\frac{π}{6}$,$\frac{π}{4}$]上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.在△ABC中,a=4,B=45°,若解此三角形有且僅有一解,則b的取值范圍是( 。
A.[3,+∞)B.[4,+∞)C.{2$\sqrt{3}$}∪[3,+∞)D.{2$\sqrt{2}$}∪[4,+∞)

查看答案和解析>>

同步練習冊答案