2.已知遞增等差數(shù)列{an},滿足a22+16=a62,3a3+a5=0,Sn是前n項和,則S9=(  )
A.16B.20C.27D.40

分析 利用等差數(shù)列的通項公式及其前n項和公式,

解答 解:設(shè)等差數(shù)列{an}的首項為a1,公差為d,因為$a_2^2+16=a_6^2$,3a3+a5=0,
所以$\left\{\begin{array}{l}{({a_1}+d)^2}+16={({a_1}+5d)^2}\\ 3({a_1}+2d)+{a_1}+4d=0\end{array}\right.$,解得$\left\{\begin{array}{l}{a_1}=-5\\ d=2\end{array}\right.$或$\left\{\begin{array}{l}{a_1}=5\\ d=-2\end{array}\right.$,
因為數(shù)列{an}是遞增數(shù)列,
所以$\left\{\begin{array}{l}{a_1}=-5\\ d=2\end{array}\right.$,所以${S_9}=9×(-5)+\frac{9×8}{2}×2=27$.
故選:C.

點評 本題考查了等差數(shù)列的通項公式及其前n項和公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.過C:y2=8x拋物線上一點P(2,4)作傾斜角互補的兩條直線,分別與拋物線相交于A、B兩點,則直線AB的斜率是( 。
A.-$\frac{1}{2}$B.-1C.-$\frac{2}{3}$D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某班甲、乙兩名同學(xué)參加100米達標訓(xùn)練,在相同條件下兩人10次訓(xùn)練的成績(單位:秒)如下:
12345678910
11.612.213.213.914.011.513.114.511.714.3
12.313.314.311.712.012.813.213.814.112.5
(1)請完成樣本數(shù)據(jù)的莖葉圖(在答題卷中);如果從甲、乙兩名同學(xué)中選一名參加學(xué)校的100米比賽,從成績的穩(wěn)定性方面考慮,選派誰參加比賽更好,并說明理由(不用計算,可通過統(tǒng)計圖直接回答結(jié)論);
(2)從甲、乙兩人的10次訓(xùn)練成績中各隨機抽取一次,求抽取的成績中至少有一個比12.8秒差的概率;
(3)經(jīng)過對甲、乙兩位同學(xué)的多次成績的統(tǒng)計,甲、乙的成績都均勻分布在區(qū)間[11,15](單位:秒)之內(nèi),現(xiàn)甲、乙比賽一次,求甲、乙成績之差的絕對值小于0.8秒的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.將函數(shù)f(x)=2sin(2x+$\frac{π}{6}$)的圖象至少向右平移$\frac{π}{12}$個單位,所得圖象恰關(guān)于坐標原點對稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在平行四邊形ABCD中,E為BC的中點,F(xiàn)為DC的中點,若$\overrightarrow{AC}$=λ$\overrightarrow{AE}$+μ$\overrightarrow{BF}$,則λ+μ的值為$\frac{8}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知變量x,y滿足$\left\{\begin{array}{l}3x+y-3≤0\\ 2x-3y+6≥0\\ 2x-y-2≤0\end{array}\right.$,若z=2x+3y的最大值為m,最小值為n,則m${\;}^{\frac{1}{n}}$=$3\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某幼兒園從新入學(xué)的女童中,隨機抽取50名,其身高(單位:cm)的頻率分布表如表:
分組(身高)[80,85)[85,90)[90,95)[95,100)
頻數(shù)(人數(shù))5102015
(1)完成下列頻率分布直方圖;
(2)用分層抽樣的方法從身高在[80,85)和[95,100)的女童中共抽取4人,其中身高在[80,85)的有幾人?
(3)在(2)中抽取的4個女童中,任取2名,求身高在[80,85)和[95,100)中各有1人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=sin(2x+$\frac{π}{6}$)+cos2x.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若f($\frac{α}{2}$-$\frac{π}{6}$)=$\frac{3\sqrt{3}}{5}$,且α∈($\frac{π}{2}$,π),求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知集合A={x|x2-x-2≤0},集合B={x|1<x≤3},則A∪B={x|-1≤x≤3}.

查看答案和解析>>

同步練習(xí)冊答案