5.現(xiàn)有2個(gè)男生.3個(gè)女生和1個(gè)老師共六人站成一排照相,若兩端站男生,3個(gè)女生中有且僅有兩人相鄰,則不同的站法種數(shù)是( 。
A.12B.24C.36D.48

分析 分三步,先排男生,再排女生,最后排老師,根據(jù)分步計(jì)數(shù)原理可得.

解答 解:第一步:先排2名男生有A22=2種,
第二步:排女生,3名女生全排形成了4個(gè)空,
第三步,將這1個(gè)老師插入3名女生形成的2空(不含3名女生兩端的空)中,
根據(jù)分步計(jì)數(shù)原理可得,共有A22A33A21=24種,
故選:B.

點(diǎn)評(píng) 本題考查了分步計(jì)數(shù)原理,關(guān)鍵是掌握不相鄰問(wèn)題用抽空法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.設(shè)函數(shù)f(x)=$\frac{1-x}{1+x}$,記f1(x)=f(f(x)),f2(x)=f(f1(x)),…,fn+1(x)=f(fn(x)),n∈N*,那么下列說(shuō)法正確的是( 。
A.f(x)的圖象關(guān)于點(diǎn)(-1,1)對(duì)稱,f2016(0)=0
B.f(x)的圖象關(guān)于點(diǎn)(-1,-1)對(duì)稱,f2016(0)=0
C.f(x)的圖象關(guān)于點(diǎn)(-1,1)對(duì)稱,f2016(0)=1
D.f(x)的圖象關(guān)于點(diǎn)(-1,-1)對(duì)稱,f2016(0)=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若tan(π+α)=2,則sin2α=(  )
A.$-\frac{2}{5}$B.$-\frac{4}{5}$C.$\frac{2}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知向量$\overrightarrow a$,$\overrightarrow b$滿足|$\overrightarrow a|=1$,|$\overrightarrow a$-$\overrightarrow b$|=$\sqrt{7}$,$\overrightarrow a$,$\overrightarrow b$的夾角為$\frac{2π}{3}$,則|$\overrightarrow b$|=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知$\overrightarrow{a}$=(-1,2),$\overrightarrow$=(2,k),若$\overrightarrow$=λ$\overrightarrow{a}$,則λ+k=-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知a=${∫}_{0}^{π}$$\frac{3}{2}$sinxdx,若二項(xiàng)式(ax-$\frac{1}{\root{3}{x}}$)n的展開(kāi)式中各項(xiàng)系數(shù)之和為256.
(1)求展開(kāi)式中二項(xiàng)式系數(shù)最大的項(xiàng);
(2)求展開(kāi)式中的常數(shù)項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.${∫}_{1}^{e}$$\frac{1}{x}$dx的值為( 。
A.1B.-1C.$\frac{1}{e}$-1D.1-$\frac{1}{e}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.F1、F2是橢圓$\frac{x^2}{4}$+$\frac{y^2}{3}$=1的焦點(diǎn),P是橢圓上任意一點(diǎn),$\overrightarrow{P{F_1}}$•$\overrightarrow{P{F_2}}$的最大值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.3~9歲小孩的身高與年齡的回歸模型y=7.2x+74,用這個(gè)模型預(yù)測(cè)這個(gè)孩子10歲時(shí)的身高,則正確的敘述是(  )
A.身高一定是146cmB.身高在146cm以上C.身高在146cm以下D.身高在146cm左右

查看答案和解析>>

同步練習(xí)冊(cè)答案