8.若函數(shù)f(x)=ax(a>0,a≠1)在[-1,2]上的最大值為4,最小值為m,且函數(shù)g(x)=(1-4m)$\sqrt{x}$在[0,+∞)上是增函數(shù),則m=$\frac{1}{16}$,a=$\frac{1}{4}$.

分析 先根據(jù)g(x)的單調(diào)性求出m的范圍,在分類討論,根據(jù)指函數(shù)的單調(diào)性,求出a,m的值,問題得以解決

解答 解:∵函數(shù)g(x)=(1-4m)$\sqrt{x}$在[0,+∞)內(nèi)是增函數(shù),
∴1-4m>0,
即m<$\frac{1}{4}$,
∵函數(shù)f(x)=ax(a>0,a≠1﹚在區(qū)間[-1,2]上的最大值為4,最小值為m,
當(dāng)a>1時,函數(shù)f(x)=ax為增函數(shù),
∴a-1=m,a2=4,
解得a=2,m=$\frac{1}{2}$$>\frac{1}{4}$(舍去),
當(dāng)0<a<1時,函數(shù)f(x)=ax為減函數(shù),
∴a-1=4,a2=m,
解得a=$\frac{1}{4}$,m=$\frac{1}{16}$∈(-∞,$\frac{1}{4}$),
綜上所述,a=$\frac{1}{4}$,m=$\frac{1}{16}$
故答案為:m=$\frac{1}{16}$,a=$\frac{1}{4}$,

點評 本題主要考查了指數(shù)函數(shù)的單調(diào)性,掌握性質(zhì)很重要,屬于基礎(chǔ)題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)f(x)=ln(x+1)-$\frac{1}{x}$的零點所在的大致區(qū)間是( 。
A.(0,1)B.(1,2)C.(2,e)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知冪函數(shù)f(x)滿足f($\frac{1}{3}$)=9,則f(x)的圖象所分布的象限是(  )
A.只在第一象限B.第一、三象限C.第一、四象限D.第一、二象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{3x-5,x≥6}\\{f(x+3),x<6}\end{array}\right.$,則f(2)=19.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.試討論函數(shù)f(x)=$\sqrt{1-{x}^{2}}$在區(qū)間[0,1]上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)f(x)=$\frac{x}{{e}^{x-1}}$,g(x)=ax+3-3a(a>0),若對于任意x1∈[0,2],總存在x0∈[0,2],使得g(x0)=f(x1)成立,則a的取值范圍是( 。
A.[2,+∞)B.[1,2]C.[0,2]D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在△ABC中,角A,B,C的對邊分別為a,b,c,且$\sqrt{3}$bcosA=asinB.
(1)求角A的大小;
(2)若a=6,△ABC的面積是9$\sqrt{3}$,求三角形邊b,c的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.定義在R上的奇函數(shù)f(x)=x3+sinx-ax+a-2的一個零點所在的區(qū)間為(  )
A.$({\frac{1}{2},1})$B.$({1,\frac{π}{2}})$C.$({\frac{π}{2},2})$D.(2,π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若定義在R上的偶函數(shù)f(x)在[0,+∞)內(nèi)是增函數(shù),且f(3)=0,則關(guān)于x的不等式x•f(x)≤0的解集為( 。
A.{x|-3≤x≤0或x≥3}B.{x|x≤-3或-3≤x≤0}C.{x|-3≤x≤3}D.{x|x≤-3或x≥3}

查看答案和解析>>

同步練習(xí)冊答案