某市居民自來水收費標準如下:每戶每月用水不超過4噸時,每噸為1.80元;當用水超過4噸時,超過部分每噸3.00元。某月甲、乙兩戶共交水費元,已知甲、乙兩戶該月用水量分別為噸和噸。
(1)求關于的函數(shù);
(2)若甲、乙兩戶該月共交水費26.4元,分別求出甲、乙兩戶該月的用水量和水費。

(1);(2)甲戶用水量為7.5噸,應繳水費元;乙戶用水量為4.5噸,應繳水費元。

解析試題分析:(1)當,即時,,所以.-------1分
,,
,.------3分
,即時,
,------4分
綜上:-------5分
(2)由(1)知:當時, ;當時, ;當時, .所以若甲、乙兩戶共交水費26.4元時, ------7分
所以,解得:;-------9分
所以甲戶用水量為7.5噸,應繳水費元;乙戶用水量為4.5噸,應繳水費元。-------10分
考點:分段函數(shù)的實際應用題。
點評:本題主要考查分段函數(shù)函數(shù)模型的構建及利用函數(shù)模型解決實際問題,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分14分) 本題共有2個小題,第1小題滿分6分,第2小題滿分8分.
已知函數(shù)=.
(1)判斷函數(shù)的奇偶性,并證明;
(2)求的反函數(shù),并求使得函數(shù)有零點的實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)已知冪函數(shù)為偶函數(shù).
⑴求的值;
⑵若,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)
(1)求值
(2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分16分)
已知二次函數(shù)
(1)設上的最大值、最小值分別是、,集合,且,記,求的最小值.
(2)當時,
①設,不等式的解集為C,且,求實數(shù)的取值范圍;
②設 ,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)f(x)=x2+(2+lga)x+lgb,f(-1)=-2.
(1)求a與b的關系式;
(2)若f(x)≥2x恒成立,求a、b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題共12分)水庫的蓄水量隨時間而變化,現(xiàn)用t表示時間,以月為單位,年初為起點,根據(jù)歷年數(shù)據(jù),某水庫的蓄水量(單位:億立方米)關于t的近似函數(shù)關系式為
V(t)=
(Ⅰ)該水庫的蓄水量小于50的時期稱為枯水期.以i-1<t<i表示第i月份(i=1,2,…,12),問一年內哪幾個月份是枯水期?
(Ⅱ)求一年內該水庫的最大蓄水量(取e=2.7計算).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某企業(yè)為打入國際市場,決定從A、B兩種產品中只選擇一種進行投資生產.已
知投資生產這兩種產品的有關數(shù)據(jù)如下表:(單位:萬美元)

項目類別
 
年固定成本
 
每件產品成本
 
每件產品銷售價
 
每年最多可生產的件數(shù)
 
A產品
 
10
 
m
 
5
 
100
 
B產品
 
20
 
4
 
9
 
60
 
其中年固定成本與年生產的件數(shù)無關,m為待定常數(shù),其值由生產A產品的原材料價格決定,預計m∈[3,4].另外,年銷售x件B產品時需上交0.05x2萬美元的特別關稅.假設生產出來的產品都能在當年銷售出去.
(1)寫出該廠分別投資生產A、B兩種產品的年利潤y1,y2與生產相應產品的件數(shù)x之間的函數(shù)關系并指明其定義域;
(2)如何投資才可獲得最大年利潤?請你做出規(guī)劃.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(文科題)(本小題12分)
要建造一個無蓋長方體水池,底面一邊長固定為8m,最大裝水量為72m,池底和池壁的造價分別為2元/元/,怎樣設計水池底的另一邊長和水池的高,才能使水池的總造價最低?最低造價是多少?

查看答案和解析>>

同步練習冊答案