10.如圖,已知向量$\overrightarrow{a}$與$\overrightarrow$,求作向量3$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow$.

分析 分別作出同起點(diǎn)的向量3$\overrightarrow{a}$和$\frac{1}{2}\overrightarrow$,利用向量的三角形法則得出所求向量.

解答 解:作向量$\overrightarrow{OA}$=3$\overrightarrow{a}$,$\overrightarrow{OB}$=$\frac{1}{2}\overrightarrow$,則$\overrightarrow{BA}$即為所求向量,如圖:

點(diǎn)評(píng) 本題考查了平面向量的三角形法則,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若x,y滿(mǎn)足約束條件$\left\{\begin{array}{l}{x-1≥0}\\{x≤y}\\{x+y≤4}\end{array}\right.$,則$\frac{1}{x}$+$\frac{2}{y}$的最大值為( 。
A.$\frac{5}{3}$B.2C.$\frac{3}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且csinC=(a-$\frac{\sqrt{3}b}{2}$)sinA+(b-$\frac{\sqrt{3}a}{2}$)sinB.
(1)求角C的大;
(2)若a=2$\sqrt{3}$,c=2,求△ABC的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若a,b∈R,則“a2+b2>2”是“a+b>2”的( 。l件.
A.充分不必要B.必要不充分
C.充分必要D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)f(x)=2x2+5的圖象上一(1,7)及鄰近一點(diǎn)(1+△x,7+△y),則$\frac{△y}{△x}$=( 。
A.△2xB.4△xC.2△x+4D.4△x+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.在復(fù)平面內(nèi),點(diǎn)P、Q對(duì)應(yīng)的復(fù)數(shù)分別為z1、z2.且z2=2z1+3-4i,|z1|=1.求點(diǎn)Q的軌跡以(3,-4)為圓心,2為半徑的圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在△ABC中,角A、B、C對(duì)邊分別為a,b,c,S為△ABC的面積,且有4sinBsin2($\frac{π}{4}$+$\frac{B}{2}$)+cos2B=1+$\sqrt{3}$.
(1)求角B的度數(shù);
(2)若a=4,S=5$\sqrt{3}$,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=Asinxcos(x+$\frac{π}{6}$)+1(其中常數(shù)A>0).
(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若函數(shù)f(x)在區(qū)間[0,$\frac{π}{2}$]上的最小值是-1,求A的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.用計(jì)算器將下列各角由弧度轉(zhuǎn)換為角度(精確到1″)
(1)$\frac{2π}{7}$;
(2)13.

查看答案和解析>>

同步練習(xí)冊(cè)答案