分析 (Ⅰ)求出函數(shù)的導數(shù),根據(jù)切線方程求出a的值,從而求出f(x)的單調(diào)區(qū)間,從而求出函數(shù)的值域即可;
(Ⅱ)求出函數(shù)的導數(shù),問題轉(zhuǎn)化為ax2-3x+2≤0在[1,+∞)上恒成立,通過討論a的范圍,判斷函數(shù)的單調(diào)性,從而求出a的具體范圍即可.
解答 解:(Ⅰ)${f^'}(x)=a+\frac{2}{x^2}-\frac{3}{x}$
由題意可知${f^'}(\frac{2}{3})=1解得a=1$,∴$f(x)=x-\frac{2}{x}-3lnx(x∈[\frac{3}{2},3])$,∴${f^'}(x)=\frac{(x-1)(x-2)}{x^2}$
由f′(x)=0,得x=2.于是可得下表:
x | $\frac{3}{2}$ | $(\frac{3}{2},2)$ | 2 | (2,3) | 3 |
f′(x) | - | 0 | + | ||
f(x) | $\frac{1}{6}-3ln\frac{3}{2}$ | ↘ | 1-3ln2 | ↗ | $\frac{7}{3}-3ln3$ |
點評 本題考查了切線方程問題,考查函數(shù)的單調(diào)性、最值問題,考查導數(shù)的應用以及分類討論思想,是一道中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 等邊三角形 | B. | 直角三角形 | C. | 等腰三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 10$\sqrt{2}$ | B. | 5$\sqrt{2}$ | C. | 5$\sqrt{6}$ | D. | $\frac{10\sqrt{6}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|2<x≤3} | B. | {x|3≤x<4} | C. | {x|2<x<4} | D. | {x|2≤x<4} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com