分析 (1)將$\left\{\begin{array}{l}{x=3+tcos\frac{π}{4}}\\{y=1-tsin\frac{π}{4}}\end{array}\right.$,消去t,曲線C1的直角坐標方程;
(2)由ρ=4cosθ,得ρ2=4ρcosθ,求得曲線C2的方程直角坐標x2+y2-4x=0,解方程即可求得其交點坐標,即可求得A,B兩點的極坐標.
解答 解:(1)由線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=3+tcos\frac{π}{4}}\\{y=1-tsin\frac{π}{4}}\end{array}\right.$,消去t得:x+y-4=0,
∴曲線C1的直角坐標方程x+y-4=0;
(2)由ρ=4cosθ,得ρ2=4ρcosθ,即x2+y2-4x=0,
$\left\{\begin{array}{l}{x+y-4=0}\\{{x}^{2}+{y}^{2}-4x=0}\end{array}\right.$,解得:$\left\{\begin{array}{l}{x=2}\\{y=2}\end{array}\right.$,$\left\{\begin{array}{l}{x=4}\\{y=0}\end{array}\right.$,
曲線C1與曲線C2交點的坐標為(2,2),(4,0),
∴A,B兩點的極坐標(2$\sqrt{2}$,$\frac{π}{4}$),(4,0).
點評 本題考查了參數(shù)方程化普通方程,考查了極坐標方程化直角坐標方程,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ∅ | B. | [-1,0] | C. | [-1,0) | D. | (1,2] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com