如圖,在四棱錐P-ABCED中,PD⊥面ABCD,四邊形ABCD為平行四邊形,∠DAB=60°,AB=PA=2AD=4,
(1)若E為PC中點(diǎn),求證:PA∥平面BDE
(2)求三棱錐D-BCP的體積.
考點(diǎn):棱柱、棱錐、棱臺(tái)的體積,直線與平面平行的判定
專題:空間位置關(guān)系與距離
分析:(1)連結(jié)AC,BD,交于點(diǎn)O,連結(jié)OE,則OE∥AP,由此能證明PA∥平面BDE.
(2)求出S△BDC=
1
2
×4×2×sin60°
=2
3
,PD=
16-4
=2
3
,由VD-BCP=VP-DBC=
1
3
S△DBC•PD
,能求出三棱錐D-BCP的體積.
解答: (1)證明:連結(jié)AC,BD,交于點(diǎn)O,
∵四邊形ABCD為平行四邊形,∴O是AC中點(diǎn),
∵E是PC中點(diǎn),∴OE∥AP,
又AP?平面BDE,OE?平面BDE,
∴PA∥平面BDE.
(2)解:∵S△BDC=
1
2
×4×2×sin60°
=2
3
,
PD=
16-4
=2
3

VD-BCP=VP-DBC=
1
3
S△DBC•PD
=
1
3
×2
3
×2
3
=4.
點(diǎn)評(píng):本題考查直線與平面平行的證明,考查三棱錐的體積的求法,解題時(shí)要注意空間思維能力的培養(yǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C的頂點(diǎn)為P(0,4),焦點(diǎn)為F(0,
15
4
),直線l與拋物線C交于點(diǎn)M、N兩點(diǎn),且∠MPN=90°
(Ⅰ)求拋物線C的方程;
(Ⅱ)證明直線MN過(guò)一定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在長(zhǎng)為16cm的線段AB上任取一點(diǎn)M,并以線段AM為一邊作正方形,則此正方形的面積介于25cm2與81cm2之間的概率為( 。
A、
5
16
B、
1
8
C、
1
4
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,∠BAC=45°,AC=a,AB=
2
AC,E,F(xiàn)為邊BC的三等分點(diǎn),則
AE
AF
=( 。
A、
11
9
a2
B、
5
4
a2
C、
5
3
a2
D、
15
8
a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=(
1
3
 
x-1
的值域?yàn)椋ā 。?/div>
A、(-∞,0)B、(0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,⊙O是等腰三角形ABC的外接圓,AB=AC,延長(zhǎng)BC到點(diǎn)D,使CD=AC,連接AD交⊙O于點(diǎn)E,連接BE與AC交于點(diǎn)F.
(1)判斷BE是否平分∠ABC,并說(shuō)明理由;
(2)若AE=6,BE=8,求EF的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
a(x-b)
(x-b)2+c
(a≠0,b∈R,c>0),g(x)=m[f(x)]2-n(m,n∈R,且mn>0),給出下列命題,①函數(shù)f(x)的圖象關(guān)于點(diǎn)(b,0)成中心對(duì)稱;②存在實(shí)數(shù)p和q,使得p≤f(x)≤q對(duì)于任意實(shí)數(shù)x恒成立;③關(guān)于x的方程g(x)=0的解集可能為{-4,-2,0,3}其中正確的是( 。
A、①②B、②③C、①③D、①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左焦點(diǎn)F作圓O:x2+y2=a2的兩條切線,切點(diǎn)分別為A,B,雙曲線的左頂點(diǎn)為C,若∠ACB=120°,求雙曲線的漸近線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1-x-x2)(x+
1
x
6展開(kāi)式的常數(shù)項(xiàng)為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案