8.關(guān)于x的方程($\frac{1}{3}$)|x|+a-1=0有解,則a的取值范圍是(  )
A.0≤a<1B.-1<a≤0C.a≥1D.a>0

分析 若關(guān)于x的方程($\frac{1}{3}$)|x|+a-1=0有解,則關(guān)于x的方程($\frac{1}{3}$)|x|-1=-a有解,進而可得a的取值范圍.

解答 解:若關(guān)于x的方程($\frac{1}{3}$)|x|+a-1=0有解,
則關(guān)于x的方程($\frac{1}{3}$)|x|-1=-a有解,
∵($\frac{1}{3}$)|x|∈(0,1],
∴($\frac{1}{3}$)|x|-1=-a∈(-1,0],
∴0≤a<1,
故選:A

點評 本題考查的知識點是根的存在性及根的個數(shù)判斷,指數(shù)函數(shù)的圖象和性質(zhì),難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若直線l經(jīng)過A(2,1),B(1,-m2)(m∈R)兩點,則直線l的傾斜角α的取值范圍是( 。
A.0≤α≤$\frac{π}{4}$B.$\frac{π}{2}$<α<πC.$\frac{π}{4}$≤α<$\frac{π}{2}$D.$\frac{π}{2}$<α≤$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知二次函數(shù)y=f(x)的圖象經(jīng)過坐標(biāo)原點,其導(dǎo)函數(shù)為f'(x)=6x+2,數(shù)列{an}的前n項和為Sn,點$({n,{S_n}})({n∈{N^*}})$均在函數(shù)y=f(x)的圖象上.
(I)求數(shù)列{an}的通項公式;
(II)設(shè)${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,Tn是數(shù)列{bn}的前n項和,若Tn=m對所有n∈N*都成立,求m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.命題“?x∈R,|x|+x≥0”的否定是?x∈R,|x|+x<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.當(dāng)x,y滿足條件$\left\{\begin{array}{l}{x≤y}\\{x≥0}\\{2x+y-3≤0}\end{array}\right.$時,目標(biāo)函數(shù)z=3x+2y的最大值是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.直角△ABC的三個頂點在半徑為R的球面上,兩直角邊的長分別為6和8,球心到平面ABC的距離是12,則R=( 。
A.26B.20C.13D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{4}$=1(a>0)的離心率為$\frac{\sqrt{5}}{2}$,點F1、F2是其左右焦點,點P(5,y0)與點Q是雙曲線上關(guān)于坐標(biāo)原點對稱的兩點,則四邊形F1QF2P的面積為6$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某超市選取了5個月的銷售額和利潤額,資料如表:
銷售額x(千萬元)35679
利潤額y(百萬元)23345
(1)求利潤額y對銷售額x的回歸直線方程;
(2)當(dāng)銷售額為4(千萬元)時,估計利潤額的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.對于定義域為R的函數(shù)f(x),若存在非零實數(shù)x0,使函數(shù)f(x)在(-∞,x0)和(x0,+∞)上與x軸均有交點,則稱x0為函數(shù)f(x)的一個“界點”.則下列四個函數(shù)中,不存在“界點”的是( 。
A.f(x)=x2+bx-1(b∈R)B.f(x)=|x2-1|C.f(x)=2-|x-1|D.f(x)=x3+2x

查看答案和解析>>

同步練習(xí)冊答案