6.設(shè)函數(shù)f(x)=(x+k+1)$\sqrt{x-k}$,g(x)=$\sqrt{x-k+3}$,其中k>0.
(1)若k=1,解不等式f(x)<2g(x);
(2)求函數(shù)F(x)=f(x)-(x-k)g(x)的零點(diǎn)個(gè)數(shù).

分析 (1)代入k=1,化簡(jiǎn)不等式轉(zhuǎn)化為不等式組求解即可.
(2)化簡(jiǎn)函數(shù)的解析式,利用函數(shù)為0,通過(guò)分類(lèi)討論求解函數(shù)的零點(diǎn)即可.

解答 解:(1)解由k=1,不等式f(x)<2g(x);
即(x+2)$\sqrt{x-1}$<2$\sqrt{x+2}$,變形等價(jià)于$\left\{\begin{array}{l}{x≥1}\\{\sqrt{(x+2)(x-1)}<2}\end{array}\right.$-----------------------------3分
解得1≤x<2.--------------------------------------------------5分
(2)函數(shù)F(x)=f(x)-(x-k)g(x)
=(x+k+1)$\sqrt{x-k}$-(x-k)$\sqrt{x-k+3}$
=$\sqrt{x-k}$[(x+k+1)-$\sqrt{(x-k)(x-k+3)}$],
令F(x)=0,所以x=k或x+k+1=$\sqrt{(x-k)(x-k+3)}$(x≥k).---------------------------------7分
由x+k+1=$\sqrt{(x-k)(x-k+3)}$(x≥k).
等價(jià)于$\left\{\begin{array}{l}{x≥k}\\{(4k-1)x=-5k-1}\end{array}\right.$--------------------------------------------------9分
當(dāng)k=$\frac{1}{4}$時(shí),此方程無(wú)解;--------------------------------------------------10分
當(dāng)$k≠\frac{1}{4}$時(shí),$x=\frac{-5k-1}{4k-1}$,$\frac{-5k-1}{4k-1}-k=\frac{-(2k+1)^{2}}{4k-1}$,
當(dāng)k>$\frac{1}{4}$時(shí),$\frac{-5k-1}{4k-1}<k$,所以此根不是原函數(shù)的零點(diǎn),----------------------------------12分
當(dāng)k$<\frac{1}{4}$且$k≠-\frac{1}{2}$時(shí),此根為原函數(shù)的零點(diǎn),當(dāng)x=$-\frac{1}{2}$時(shí),此根與k相等.--------------------------------------------------14分
故原函數(shù)的零點(diǎn),當(dāng)k<$\frac{1}{4}$且k$≠-\frac{1}{2}$時(shí),原函數(shù)有兩個(gè)零點(diǎn);
當(dāng)k$≥\frac{1}{4}$或k=$-\frac{1}{2}$時(shí),原函數(shù)有一個(gè)零點(diǎn).--------------------------------------------------16分.

點(diǎn)評(píng) 本題考查函數(shù)的零點(diǎn)與方程的根的關(guān)系,無(wú)理不等式的解法,考查分類(lèi)討論思想的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在遞增的等差數(shù)列{an}中,已知a2+a3=10,a1•a4=16
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足an=$\frac{b_1}{3+1}+\frac{b_2}{{{3^2}+1}}+\frac{b_3}{{{3^3}+1}}+…+\frac{b_n}{{{3^n}+1}}$,求數(shù)列{bn}的通項(xiàng)公式;
(3)令cn=$\frac{{{a_n}{b_n}}}{4}$,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.在復(fù)平面內(nèi),復(fù)數(shù)$\frac{10i}{3+i}$的共軛復(fù)數(shù)對(duì)應(yīng)的點(diǎn)坐標(biāo)為(1,-3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.復(fù)平面內(nèi),復(fù)數(shù)z=(i+2)(i2+i),則復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.若兩個(gè)正實(shí)數(shù)x,y滿足$\frac{1}{x}+\frac{2}{y}$=1,且不等式x+$\frac{y}{2}$<m2-3m有解,則實(shí)數(shù)m的取值范圍是(-∞,-1)∪(4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.函數(shù)y=sin(3x+$\frac{π}{4}$)+$\sqrt{3}$cos(3x+$\frac{π}{4}$)的最小正周期是( 。
A.B.C.$\frac{2π}{3}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)x、y∈R+,且x≠y,a=$\frac{x+y}{2}$,b=$\sqrt{xy}$,c=$\frac{2}{\frac{1}{x}+\frac{1}{y}}$,則a,b,c的大小關(guān)系為( 。
A.a<b<cB.a>b>cC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知等差數(shù)列{an}滿足a1+a2+a3+…+a101=0,則有( 。
A.a1+a101>0B.a2+a100<0C.a3+a100≤0D.a51=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.一個(gè)幾何體的三視圖如圖所示,該幾何體的體積為( 。
A.$\frac{3}{4}$B.$\frac{\sqrt{6}}{4}$C.4$\sqrt{3}$D.4$\sqrt{6}$

查看答案和解析>>

同步練習(xí)冊(cè)答案