13.雙曲線$\frac{y^2}{4}-{x^2}=1$的頂點(diǎn)到其漸近線的距離等于$\frac{2\sqrt{5}}{5}$.

分析 求得雙曲線的a,b,可得頂點(diǎn),漸近線方程,運(yùn)用點(diǎn)到直線的距離公式,計(jì)算即可得到所求值.

解答 解:雙曲線$\frac{y^2}{4}-{x^2}=1$的a=2,b=1,
可得頂點(diǎn)為(0,±2),
漸近線方程為y=±2x,
即有頂點(diǎn)到其漸近線的距離為$\frac{2}{\sqrt{4+1}}$=$\frac{2\sqrt{5}}{5}$.
故答案為:$\frac{{2\sqrt{5}}}{5}$.

點(diǎn)評(píng) 本題考查雙曲線的頂點(diǎn)到漸近線的距離,注意運(yùn)用點(diǎn)到直線的距離公式,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如果雙曲線經(jīng)過點(diǎn)P(2,$\sqrt{2}$),且它的一條漸近線方程為y=x,那么該雙曲線的方程是(  )
A.x2-$\frac{3{y}^{2}}{2}$=1B.$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{2}$=1C.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{6}$=1D.$\frac{{y}^{2}}{2}$-$\frac{{x}^{2}}{2}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知雙曲線的一個(gè)焦點(diǎn)F,點(diǎn)P在雙曲線的一條漸近線上,點(diǎn)O為雙曲線的對(duì)稱中心,若△OFP為等腰直角三角形,則雙曲線的離心率為( 。
A.$\sqrt{6}$B.$\sqrt{2}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=xsinx+cosx+x2,則不等式$f(lnx)+f(ln\frac{1}{x})<2f(1)$的解集為( 。
A.(e,+∞)B.(0,e)C.$(0,\frac{1}{e})∪(1,e)$D.$(\frac{1}{e},e)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的右焦點(diǎn)為F,以F為圓心和雙曲線的漸近線相切的圓與雙曲線的一個(gè)交點(diǎn)為M,且MF與雙曲線的實(shí)軸垂直,則雙曲線C的離心率為( 。
A.$\frac{{\sqrt{5}}}{2}$B.$\sqrt{5}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知點(diǎn)$A(\sqrt{5}\;,\;\;0)$和曲線$y=\sqrt{\frac{x^2}{4}-1}(2\;≤\;x\;≤\;2\sqrt{5})$上的點(diǎn)P1,P2,…,Pn.若|P1A|,|P2A|,…,|PnA|成等差數(shù)列且公差$d∈(\frac{1}{5}\;,\;\;\frac{1}{{\sqrt{5}}})$,則n的最大值為14.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=$\frac{x}{cosx}$的定義域?yàn)椋?$\frac{π}{2}$,$\frac{π}{2}$),當(dāng)|xi|<$\frac{π}{2}$時(shí)(i=1,2,3),f(x1)+f(x2)≥0,f(x2)+f(x3)≥0,f(x3)+f(x1)≥0,則下列結(jié)論正確的是( 。
A.x1+x2+x3>0B.x1+x2+x3<0C.f(x1+x2+x3)≥0D.f(x1+x2+x3)≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某市交管部門隨機(jī)抽取了89位司機(jī)調(diào)查有無酒駕習(xí)慣,匯總數(shù)據(jù)的如表:
男性女性合計(jì)
無酒駕習(xí)慣31
有酒駕習(xí)慣8
合計(jì)89
已知在這89人隨機(jī)抽取1人,抽到無酒駕習(xí)慣的概率為$\frac{57}{89}$,
(1)將如表中空白部分?jǐn)?shù)據(jù)補(bǔ)充完整;
(2)若從有酒駕習(xí)慣的人中按性別用分層抽樣的方法抽取8人參加某項(xiàng)活動(dòng),現(xiàn)從這8人中隨機(jī)抽取2人,記抽到女性的人數(shù)為X,求X得分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.命題“經(jīng)過圓外一點(diǎn)與圓相切的直線至少有一條”的否定是( 。
A.經(jīng)過圓外一點(diǎn)與圓相切的直線至多有兩條
B.經(jīng)過圓外一點(diǎn)與圓相切的直線有兩條
C.經(jīng)過圓外一點(diǎn)與圓相切的直線不存在
D.經(jīng)過圓外一點(diǎn)與圓相切的直線至多有一條

查看答案和解析>>

同步練習(xí)冊(cè)答案