(本題滿(mǎn)分12分)如圖,已知三棱柱ABC—A1B1C1的側(cè)棱與底面垂直,AA1=AB=AC=1,AB⊥AC,M、N分別是CC1、BC的中點(diǎn),點(diǎn)P在直線A1B1上,且滿(mǎn)足.
(1)證明:PN⊥AM;
(2)若平面PMN與平面ABC所成的角為45°,試確定點(diǎn)P的位置.
解:(1)證明:如圖,以AB,AC,AA1分別為x,y,z軸,建立空間直角坐標(biāo)系A(chǔ)-xyz.
則P(λ,0,1),N(,,0),M(0,1,),…………………2分
從而=(-λ,,-1),=(0,1,),=(-λ)×0+×1-1×=0,所以PN⊥AM.…………………4分
(2)平面ABC的一個(gè)法向量為n==(0,0,1).
設(shè)平面PMN的一個(gè)法向量為m=(x,y,z),
由(1)得=(λ,-1,).
由………………6分
解得.……………8分
∵平面PMN與平面ABC所成的二面角為45°,
∴|cos〈m,n〉|=||==,
解得λ=-.…………………10分
故點(diǎn)P在B1A1的延長(zhǎng)線上,且|A1P|=.…………………12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2014屆江西高安中學(xué)高二上期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
(本題滿(mǎn)分12分)
如圖所示的幾何體是由以正三角形為底面的直棱柱被平面所截而得. ,為的中點(diǎn).
(1)當(dāng)時(shí),求平面與平面的夾角的余弦值;
(2)當(dāng)為何值時(shí),在棱上存在點(diǎn),使平面?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖北省八市高三3月聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿(mǎn)分12分)如圖,在長(zhǎng)方體中,已知上下兩底面為正方形,且邊長(zhǎng)均為1;側(cè)棱,為中點(diǎn),為中點(diǎn),為上一個(gè)動(dòng)點(diǎn).
(Ⅰ)確定點(diǎn)的位置,使得;
(Ⅱ)當(dāng)時(shí),求二面角的平
面角余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣西桂林中學(xué)高三7月月考試題理科數(shù)學(xué) 題型:解答題
(本題滿(mǎn)分12分)如圖,在四棱錐P—ABCD中,底面ABCD為正方形,PD⊥平面ABCD,且PD=AB=2,E是PB的中點(diǎn),F(xiàn)是AD的中點(diǎn).
⑴求異面直線PD與AE所成角的大;
⑵求證:EF⊥平面PBC ;
⑶求二面角F—PC—B的大。.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011年湖南省招生統(tǒng)一考試文科數(shù)學(xué) 題型:解答題
(本題滿(mǎn)分12分)
如圖3,在圓錐中,已知的直徑的中點(diǎn).
(I)證明:
(II)求直線和平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年海南省高三五校聯(lián)考數(shù)學(xué)(文) 題型:解答題
(本題滿(mǎn)分12分)
如圖,三棱錐S—ABC中,AB⊥BC,D、E分別為AC、BC的中點(diǎn),SA=SB=SC。
(1)求證:BC⊥平面SDE;
(2)若AB=BC=2,SB=4,求三棱錐S—ABC的體積。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com