7.在鈍角三角形ABC中,記k=$\frac{\sqrt{3}|tanAtanBtanC|}{tanA+tanB+tanC}$,則實數(shù)k的值為-$\sqrt{3}$.

分析 利用誘導公式、正切加法定理求解.

解答 解:∵tanA+tanB+tanC=tan(A+B)(1-tanAtanB)+tanC
=tan(π-C)(1-tanAtanB)+tanC
=-tanC(1-tanAtanB)+tanC=tanAtanBtanC,
∴在鈍角三角形ABC中,|tanAtanBtanC|=-tanAtanBtanC,
∴k=$\frac{\sqrt{3}|tanAtanBtanC|}{tanA+tanB+tanC}$=-$\sqrt{3}$.
故答案為:-$\sqrt{3}$.

點評 本題考查三角函數(shù)值的求法,是中檔題,解題時要認真審題,注意誘導公式、正切加法定理的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=4sin2(${\frac{π}{4}$+$\frac{x}{2}}$)•sinx+(cosx+sinx)(cosx-sinx)-1.
(1)化簡f(x);
(2)常數(shù)ω>0,若函數(shù)y=f(ωx)在區(qū)間$[-\frac{π}{2},\;\;\frac{2π}{3}]$上是增函數(shù),求ω的取值范圍;
(3)若函數(shù)g(x)=$\frac{1}{2}[{f({2x})+af(x)-af({\frac{π}{2}-x})-a}]-1$在$[{-\frac{π}{4},\frac{π}{2}}]$的最大值為2,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.(1)若命題“?x∈R,2x2-3ax+9<0”為假命題,求實數(shù)a的取值范圍;
(2)設p:|4x-3|≤1,命題q:x2-(2m+1)x+m(m+1)≤0.若¬p是¬q的必要而不充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的焦點為F1、F2,P是雙曲線上的一點(P不在x軸上),△PF1F2的內切圓與x軸切與點A,且A到該雙曲線漸近線的距離為$\frac{3}$,則雙曲線的離心率為( 。
A.2B.3C.$\sqrt{3}$D.$\frac{3\sqrt{2}}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知三棱錐P-ABC中,底面△ABC為等邊三角形,且PA=8,PB=PC=$\sqrt{73}$,AB=3,則三棱錐P-ABC外接球的體積為$\frac{76\sqrt{19}}{3}π$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知拋物線y2=2px(p>0)的焦點為F,點P是拋物線上的一點,且其縱坐標為4,|PF|=4.
(1)求拋物線的方程;
(2)設點A(x1,y1),B(x2,y2),(yi≤0,i=1,2)是拋物線上的兩點,∠APB的角平分線與x軸垂直,求直線AB的斜率;
(3)在(2)的條件下,若直線AB過點(1,-1),求弦AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.某高校自主招生,發(fā)送面試通知書,將考生編號為1,2,3…n的n封面試通知書裝入編號為1,2,3,…,n的n只信封中,調查表明恰好裝錯3只信封的概率為$\frac{1}{6}$
(1)確定n的值;
(2)寫出裝錯信封的件數(shù)ξ的概率分布,并求其數(shù)學期望Eξ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知函數(shù)f(x)=$\frac{lo{g}_{2}x-1}{2lo{g}_{2}x+1}$(x>2),已知f(x1)+f(x2)=$\frac{1}{2}$,則f(x1x2)的最小值=$\frac{4}{11}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=$\frac{{2}^{x}+b}{{2}^{x}+a}$,且f(1)=$\frac{1}{3}$,f(0)=0
(1)求函數(shù)f(x)的解析式;
(2)判斷函數(shù)f(x)在定義域上的單調性,并證明;
(3)求證:方程f(x)-lnx=0至少有一根在區(qū)間(1,3).

查看答案和解析>>

同步練習冊答案