5.已知函數(shù)f(x)=$\frac{2a{x}^{2}+bx+1}{{e}^{x}}$(e為自然對(duì)數(shù)的底數(shù)).
(1)當(dāng)a=b=0時(shí),直接寫(xiě)出f(x)的值域(不要求寫(xiě)出求解過(guò)程);
(2)若a=$\frac{1}{2}$,求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若f(1)=1,且方程f(x)=1在(0,1)內(nèi)有解,求實(shí)數(shù)a的取值范圍.

分析 (1)求出f(x)的導(dǎo)數(shù),根據(jù)指數(shù)函數(shù)的性質(zhì)求出函數(shù)的值域即可;
(2)由a的值,求函數(shù)的導(dǎo)數(shù),利用函數(shù)單調(diào)性和導(dǎo)數(shù)之間的關(guān)系即可求函數(shù)f(x)的單調(diào)區(qū)間;
(3)根據(jù)函數(shù)與方程之間的關(guān)系轉(zhuǎn)化為函數(shù)存在零點(diǎn)問(wèn)題,構(gòu)造函數(shù),求函數(shù)的導(dǎo)數(shù),利用函數(shù)極值和函數(shù)零點(diǎn)之間的關(guān)系進(jìn)行轉(zhuǎn)化求解即可.

解答 解:(1)a=b=0時(shí),f(x)=e-x,f(x)的值域是(0,+∞);
(2)若a=$\frac{1}{2}$,f(x)=(x2+bx+1)e-x,
則f′(x)=(2x+b)e-x-(x2+bx+1)e-x=-[x2+(b-2)x+1-b]e-x=-(x-1)[x-(1-b)]e-x,
由f′(x)=0得-(x-1)[x-(1-b)]=0,即x=1或x=1-b,
①若1-b=1,即b=0時(shí),f′(x)=-(x-1)2e-x≤0,此時(shí)函數(shù)單調(diào)遞減,單調(diào)遞減區(qū)間為(-∞,+∞).
②若1-b>1,即b<0時(shí),由f′(x)=-(x-1)[x-(1-b)]e-x>0得(x-1)[x-(1-b)]<0,即1<x<1-b,
此時(shí)函數(shù)單調(diào)遞增,單調(diào)遞增區(qū)間為(1,1-b),
由f′(x)=-(x-1)[x-(1-b)]e-x<0得(x-1)[x-(1-b)]>0,即x<1,或x>1-b,
此時(shí)函數(shù)單調(diào)遞減,單調(diào)遞減區(qū)間為(-∞,1),(1-b,+∞),
③若1-b<1,即b>0時(shí),由f′(x)=-(x-1)[x-(1-b)]e-x>0得(x-1)[x-(1-b)]<0,即1-b<x<1,
此時(shí)函數(shù)單調(diào)遞增,單調(diào)遞增區(qū)間為(1-b,1),
由f′(x)=-(x-1)[x-(1-b)]e-x<0得(x-1)[x-(1-b)]>0,即x<1-b,或x>1,
此時(shí)函數(shù)單調(diào)遞減,單調(diào)遞減區(qū)間為(-∞,1-b),(1,+∞).
(3)若f(1)=1,則f(1)=(2a+b+1)e-1=1,
即2a+b+1=e,則b=e-1-2a,
若方程f(x)=1在(0,1)內(nèi)有解,
即方程f(x)=(2ax2+bx+1)e-x=1在(0,1)內(nèi)有解,
即2ax2+bx+1=ex在(0,1)內(nèi)有解,
即ex-2ax2-bx-1=0,
設(shè)g(x)=ex-2ax2-bx-1,
則g(x)在(0,1)內(nèi)有零點(diǎn),
設(shè)x0是g(x)在(0,1)內(nèi)的一個(gè)零點(diǎn),
則g(0)=0,g(1)=0,知函數(shù)g(x)在(0,x0)和(x0,1)上不可能單調(diào)遞增,也不可能單調(diào)遞減,
設(shè)h(x)=g′(x),
則h(x)在(0,x0)和(x0,1)上存在零點(diǎn),
即h(x)在(0,1)上至少有兩個(gè)零點(diǎn),
g′(x)=ex-4ax-b,h′(x)=ex-4a,
當(dāng)a≤$\frac{1}{4}$時(shí),h′(x)>0,h(x)在(0,1)上遞增,h(x)不可能有兩個(gè)及以上零點(diǎn),
當(dāng)a≥$\frac{e}{4}$時(shí),h′(x)<0,h(x)在(0,1)上遞減,h(x)不可能有兩個(gè)及以上零點(diǎn),
當(dāng)$\frac{1}{4}$<a<$\frac{e}{4}$時(shí),令h′(x)=0,得x=ln(4a)∈(0,1),
則h(x)在(0,ln(4a))上遞減,在(ln(4a),1)上遞增,h(x)在(0,1)上存在最小值h(ln(4a)).
若h(x)有兩個(gè)零點(diǎn),則有h(ln(4a))<0,h(0)>0,h(1)>0,
h(ln(4a))=4a-4aln(4a)-b=6a-4aln(4a)+1-e,$\frac{1}{4}$<a<$\frac{e}{4}$,
設(shè)φ(x)=$\frac{3}{2}$x-xlnx+1-x,(1<x<e),
則φ′(x)=$\frac{1}{2}$-lnx,
令φ′(x)=$\frac{1}{2}$-lnx=0,得x=$\sqrt{e}$,
當(dāng)1<x<$\sqrt{e}$時(shí),φ′(x)>0,此時(shí)函數(shù)φ(x)遞增,
當(dāng)$\sqrt{e}$<x<e時(shí),φ′(x)<0,此時(shí)函數(shù)φ(x)遞減,
則φ(x)max=φ($\sqrt{e}$)=$\sqrt{e}$+1-e<0,
則h(ln(4a))<0恒成立,
由h(0)=1-b=2a-e+2>0,h(1)=e-4a-b>0,
得$\frac{e-2}{2}$<a<$\frac{1}{2}$,
當(dāng)$\frac{e-2}{2}$<a<$\frac{1}{2}$時(shí),設(shè)h(x)的兩個(gè)零點(diǎn)為x1,x2,則g(x)在(0,x1)遞增,
在(x1,x2)上遞減,在(x2,1)遞增,
則g(x1)>g(0)=0,
g(x2)<g(1)=0,
則g(x)在(x1,x2)內(nèi)有零點(diǎn),
綜上,實(shí)數(shù)a的取值范圍是($\frac{e-2}{2}$,$\frac{1}{2}$).

點(diǎn)評(píng) 本題主要考查函數(shù)單調(diào)性和單調(diào)區(qū)間的求解和判斷,利用函數(shù)單調(diào)性的性質(zhì)以及函數(shù)單調(diào)性和導(dǎo)數(shù)之間的關(guān)系是解決本題的關(guān)鍵.綜合性較強(qiáng),難度較大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知集合M={(x,y)||x|+|y|≤1},若實(shí)數(shù)對(duì)(λ,μ)滿足:對(duì)任意的(x,y)∈M,都有(λx,μy)∈M,則稱(chēng)(λ,μ)是集合M的“嵌入實(shí)數(shù)對(duì)”.則以下集合中,不存在集合M的“嵌入實(shí)數(shù)對(duì)”的是( 。
A.{(λ,μ)|λ-μ=2}B.{(λ,μ)|λ+μ=2}C.{(λ,μ)|λ22=2}D.{(λ,μ)|λ22=2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)非零向量$\overrightarrow{a}$=(x,2x),$\overrightarrow$=(-3x,2),且$\overrightarrow{a}$,$\overrightarrow$的夾角為鈍角,則x的取值范圍是( 。
A.(-∞,0)B.($\frac{4}{3}$,0)
C.(-∞,0)∪($\frac{4}{3}$,0)D.(-∞,-$\frac{1}{3}$)∪(-$\frac{1}{3}$,0)∪($\frac{4}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)全集U={1,2,3,4,5},∁U(A∪B)={1},A∩(∁UB)={3,4},則集合B=( 。
A.{1,2,4,5}B.{2,4,5}C.{1,2,5}D.{2,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.下列命題中,所有正確命題的序號(hào)為①②③④
 ①若$\overrightarrow{n_1}、\overrightarrow{n_2}$分別是平面α、β的法向量,則$\overrightarrow{n_1}$∥$\overrightarrow{n_2}$?α∥β
 ②若$\overrightarrow{n_1}、\overrightarrow{n_2}$分別是平面α、β的法向量,則α⊥β?$\overrightarrow{n_1}•\overrightarrow{n_2}=0$
 ③若$\overrightarrow n$是平面α的法向量,$\overrightarrow a$與α共面,則$\overrightarrow n$⊥$\overrightarrow a$.
 ④若兩個(gè)平面的法向量不垂直,則這兩個(gè)平面一定不垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知f(x)是定義在R上的函數(shù),且滿足①f(4)=0;②曲線y=f(x+1)關(guān)于點(diǎn)(-1,0)對(duì)稱(chēng);③當(dāng)x∈(-4,0)時(shí)f(x)=log2($\frac{x}{{e}^{|x|}}$+ex-m+1),若y=f(x)在x∈[-4,4]上有5個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍為( 。
A.[-3e-4,1)B.[-3e-4,1)∪{-e-2}C.[0,1)∪{-e-2}D.[0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知當(dāng)$x∈[{0,\frac{π}{4}}]$時(shí),函數(shù)$f(x)=2sin(ωx+\frac{π}{6})-1$(ω>0)有且僅有5個(gè)零點(diǎn),則ω的取值范圍是$[16,\frac{56}{3})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知函數(shù)f(x)=$\sqrt{3}$sin(ωx+φ)(ω>0,-$\frac{π}{2}$≤φ<$\frac{π}{2}$)的圖象關(guān)于直線x=$\frac{π}{3}$對(duì)稱(chēng),且圖象上相鄰最高點(diǎn)的距離為π.將函數(shù)y=f(x)的圖象向右平移$\frac{π}{12}$個(gè)單位后,得到y(tǒng)=g(x)的圖象,則g(x)的單調(diào)遞減區(qū)間為.
A.[kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$],k∈ZB.[kπ-$\frac{5π}{12}$,kπ-$\frac{11π}{12}$],k∈Z
C.[kπ-$\frac{5π}{12}$,kπ+$\frac{11π}{12}$],k∈ZD.[kπ+$\frac{5π}{12}$,kπ-$\frac{11π}{12}$],k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知向量$\overrightarrow{a},\overrightarrow$ 滿足|$\overrightarrow{a}$|=l,$\overrightarrow$=(2,1),且$\overrightarrow{a}•\overrightarrow$=0,則|$\overrightarrow{a}-\overrightarrow$|=( 。
A.$\sqrt{6}$B.$\sqrt{5}$C.2D.$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案