4.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-lo{g}_{2}x,x>1}\\{2+{4}^{x},x≤1}\end{array}\right.$,則f(f($\frac{1}{2}$))=-2.

分析 先求出f($\frac{1}{2}$)=2+4${\;}^{\frac{1}{2}}$=4,從而f(f($\frac{1}{2}$))=f(4),由此能求出結(jié)果.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{-lo{g}_{2}x,x>1}\\{2+{4}^{x},x≤1}\end{array}\right.$,
∴f($\frac{1}{2}$)=2+4${\;}^{\frac{1}{2}}$=4,
f(f($\frac{1}{2}$))=f(4)=-log24=-2.
故答案為:-2.

點(diǎn)評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.角α與角β的終邊互為反向延長線,則( 。
A.α=-βB.α=180°+β
C.α=k•360°+β,k∈ZD.α=k•360°±180°+β,k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.定義平面向量的一種運(yùn)算:$\overrightarrow a$?$\overrightarrow b$=|${\overrightarrow a}$|•|${\overrightarrow b}$|•sin<${\overrightarrow a$,$\overrightarrow b}$>,則下列命題:
①$\overrightarrow a$?$\overrightarrow b$=$\overrightarrow b$?$\overrightarrow a$;               
②λ($\overrightarrow a$?$\overrightarrow b$)=(λ$\overrightarrow a$)?(λ$\overrightarrow b$);
③($\overrightarrow a$+$\overrightarrow b$)?$\overrightarrow c$=$\overrightarrow a$?$\overrightarrow c$+$\overrightarrow b$?$\overrightarrow c$;   
④若$\overrightarrow a$=(x1,y1),$\overrightarrow b$=(x2,y2),則$\overrightarrow a$?$\overrightarrow b$=|x1y2-x2y1|
其中真命題是①④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知$\frac{1}{m}$+$\frac{9}{n}$=1且m,n均為正數(shù),當(dāng)m+n取得最小值時(shí),m•n值為48.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(1,2),則$\overrightarrow{a}$,$\overrightarrow$夾角的余弦值是(  )
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$\frac{3}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知等比數(shù)列{an}中,公比q是整數(shù),a1+a4=18,a2+a3=12,則此數(shù)列的前8項(xiàng)和為510.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.等差數(shù)列{an}中,a1>0,Sn 為前 n 項(xiàng)和,且 S3=S16,則 Sn取最大值時(shí),n 等于( 。
A.9B.10C.9 或 10D.10 或 11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.過點(diǎn)A(2,1)的所有直線中,距離原點(diǎn)最遠(yuǎn)的直線方程為2x+y-5=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知在△ABC中,角A,B,C的對邊分別為a,b,c,若a+b=2c,則∠C的取值范圍為$(0,\frac{π}{3}]$.

查看答案和解析>>

同步練習(xí)冊答案