17.角α與角β的終邊互為反向延長線,則(  )
A.α=-βB.α=180°+β
C.α=k•360°+β,k∈ZD.α=k•360°±180°+β,k∈Z

分析 角α,β的終邊互為反向延長線,則α與β的角的度數(shù)的差是π的整數(shù)倍,寫出結(jié)果即可.

解答 解:角α,β的終邊互為反向延長線,則α與β的角的度數(shù)的差是π的整數(shù)倍,
∴α=k•360°±180°+β,k∈Z,
故選:D.

點評 本題考查了象限角、軸線角,利用角的終邊的關(guān)系是平角,推出結(jié)果是解題的關(guān)鍵,考查理解能力,表達能力,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若函數(shù)f(x)=x3+2x2+mx-5是R上的單調(diào)遞增函數(shù),則m的取值范圍是$[\frac{4}{3},+∞)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已函數(shù)f(x)=|2x+a|的增區(qū)間是[3,+∞),則實數(shù)a的取值是( 。
A.-6B.-5C.-4D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.某小區(qū)的綠化地,有一個三角形的花圃區(qū),若該三角形的三個頂點分別用A,B,C表示,其對邊分別為a,b,c且滿足(2b-c)cosA-acosC=0,則在A處望B、C所成的角的大小為60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.△ABC的面積為S=$\frac{15\sqrt{3}}{4}$,AB=3,AC=5,$\overrightarrow{AB}$•$\overrightarrow{AC}$<0.
(1)求角A的大; 
(2)求邊BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在四棱錐P-ABCD中,已知底面ABCD是菱形且∠BAD=60°,側(cè)棱PA=PD,O為AD邊的中點,M為線段PC上的定點.
(1)求證:平面PAD⊥平面POB;
(2)若AB=2$\sqrt{3}$,PA=$\sqrt{7}$,PB=$\sqrt{13}$,且直線PA∥平面MOB,求三棱錐P-MOB的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)Sn為等差數(shù)列{an}的前n項和,若a1=1,公差d=2,Sn+2-Sn=36,則n=(  )
A.8B.7C.6D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在△ABC中,已知A,B,C分別為邊a,b,c所對的角,已知$\overrightarrow{CA}•\overrightarrow{CB}=2$,a+b=ab,其面積$S=\sqrt{3}$,則邊c=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-lo{g}_{2}x,x>1}\\{2+{4}^{x},x≤1}\end{array}\right.$,則f(f($\frac{1}{2}$))=-2.

查看答案和解析>>

同步練習(xí)冊答案