A. | 6 | B. | 8 | C. | 10 | D. | 16 |
分析 先根據(jù)拋物線(xiàn)方程求得焦點(diǎn)坐標(biāo),直線(xiàn)y=k(x-2)過(guò)拋物線(xiàn)的焦點(diǎn),將直線(xiàn)方程代入拋物線(xiàn)方程消去y,根據(jù)韋定理表示出x1+x2及x1x2進(jìn)而求得y1y2和y1+y2,由$\overrightarrow{MA}$•$\overrightarrow{MB}$=0即可求得k的值,由弦長(zhǎng)公式即可求得|AB|.
解答 解:由拋物線(xiàn)C:y2=8x可得焦點(diǎn)F(2,0),直線(xiàn)y=k(x-2)過(guò)拋物線(xiàn)的焦點(diǎn),
代入拋物線(xiàn)方程,得到k2x2-(4k2+8)x+4k2=0,△>0,
設(shè)A(x1,y1),B(x2,y2).
∴x1+x2=$\frac{4{k}^{2}+8}{{k}^{2}}$,x1x2=4.
∴y1+y2=$\frac{8}{k}$,y1y2=-16,
M(-2,4),$\overrightarrow{MA}$═(x1+2,y1-4),$\overrightarrow{MB}$=(x2+2,y2-4),
$\overrightarrow{MA}$•$\overrightarrow{MB}$=(x1+2,y1-4)•(x2+2,y2-4)=x1x2+2(x1+x2)+4+y1y2-4(y1+y2)+16=0,
整理得:k2-2k+1=0,解得k=1,
∴x1+x2=12,x1x2=4.
|AB|=$\sqrt{1+{k}^{2}}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{2}$•$\sqrt{1{2}^{2}-4×4}$=16,
故答案選:D.
點(diǎn)評(píng) 本題考查了直線(xiàn)與拋物線(xiàn)的位置關(guān)系,考查拋物線(xiàn)的標(biāo)準(zhǔn)方程及其性質(zhì)、向量的數(shù)量積公式、弦長(zhǎng)公式等基礎(chǔ)知識(shí)與基本技能方法,考查學(xué)生的計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 既沒(méi)有最大值也沒(méi)有最小值 | B. | 沒(méi)有最小值,只有最大值$\sqrt{2}$ | ||
C. | 沒(méi)有最大值,只有最小值$\sqrt{2}$ | D. | 既有最小值0,又有最大值$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{7}{6}$cm3 | B. | $\frac{4}{3}$cm3 | C. | $\frac{3}{2}$cm3 | D. | 2cm3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com