7.如圖,在三棱柱ABC-A1B1C1中,側(cè)面AA1C1C底面ABC,AA1=A1C=AC=AB=BC=2,且點O為AC中點.
(Ⅰ)證明:A1O⊥平面ABC;
(Ⅱ)求二面角A1-AB-C的余弦值.

分析 (Ⅰ)推導出A1O⊥AC,由此利用側(cè)面AA1C1C⊥底面ABC,能證明A1O⊥平面ABC.
(Ⅱ)以O為原點,OB,OC,OA1所在直線分別為x軸,y軸,z軸建立空間直角坐標系,利用向量法能求出二面角A1-AB-C的余弦值.

解答 證明:(Ⅰ)∵AA1=A1C,且O為AC的中點,∴A1O⊥AC,…(2分)
又∵側(cè)面AA1C1C⊥底面ABC,交線為AC,且A1O?平面AA1C1C,
∴A1O⊥平面ABC.…(4分)
解:(Ⅱ)以O為原點,OB,OC,OA1所在直線分別為x軸,y軸,z軸建立空間直角坐標系.
由已知可得O(0,0,0),A(0,-1,0),${A_1}(0,0,\sqrt{3})$,$B(\sqrt{3},0,0)$
∴$\overrightarrow{AB}=(\sqrt{3},1,0)$,$\overrightarrow{{A_1}B}=(\sqrt{3},0,-\sqrt{3})$,
…(6分)
設平面AA1B的一個法向量為$\overrightarrow m=(x,y,z)$,
則有$\left\{{\begin{array}{l}{\overrightarrow m•\overrightarrow{AB}=0}\\{\overrightarrow m•\overrightarrow{{A_1}B}=0}\end{array}}\right.⇒\left\{{\begin{array}{l}{\sqrt{3}x+y=0}\\{\sqrt{3}x-\sqrt{3}z=0}\end{array}}\right.$,
令x=1,得$y=-\sqrt{3}$,z=1
∴$\overrightarrow m=(1,-\sqrt{3},1)$…(8分)
∵A1O⊥平面ABC
∴平面ABC的一個法向量$\overrightarrow n=(0,0,\sqrt{3})$…(10分)
∴$cos<\overrightarrow m,\overrightarrow n>=\frac{1}{{\sqrt{5}}}=\frac{{\sqrt{5}}}{5}$
又二面角A1-AB-C是銳角
∴二面角A1-AB-C的余弦值為 $\frac{{\sqrt{5}}}{5}$…(12分)

點評 本題考查線面垂直的證明,考查二面角的余弦值的求法,考查空間中線線、線面、面面間的位置關系等基礎知識,考查推理論證能力、運算求解能力、空間想象能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想、數(shù)形結(jié)合思想,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

9.一組數(shù)x,y,4,5,6的均值是5,方差是2,則xy=( 。
A.25B.24C.21D.30

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.解下列關于x的不等式
(1)$\frac{{{x^2}+1}}{x-1}≥x+\frac{5}{x-1}+3$ 
(2)ax2-(a+2)x+2≤0(其中a>0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.如圖,在平面直角坐標系xOy中,邊長為1的正△OAB的頂點A,B均在第一象限,設點A在x軸的射影為C,∠AOC=α.
(1)試將$\overrightarrow{OA}$•$\overrightarrow{CB}$表示α的函數(shù)f(α),并寫出其定義域;
(2)求函數(shù)f(α)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知圓(x+1)2+(y-2)2=1上一點P到直線4x-3y-5=0的距離為d,則d的最小值為( 。
A.1B.2C.$\frac{4}{5}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知函數(shù)f(x)=e-x,則f'(-1)=( 。
A.$\frac{1}{e}$B.$-\frac{1}{e}$C.eD.-e

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.一個袋中裝有黑球,白球和紅球共n(n∈N*)個,這些球除顏色外完全相同.已知從袋中任意摸出1個球,得到黑球的概率是$\frac{2}{5}$.現(xiàn)從袋中任意摸出2個球.
(Ⅰ) 用含n的代數(shù)式表示摸出的2球都是黑球的概率,并寫出概率最小時n的值.(直接寫出n的值)
(Ⅱ) 若n=15,且摸出的2個球中至少有1個白球的概率是$\frac{4}{7}$,設X表示摸出的2個球中紅球的個數(shù),求隨機變量X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.在數(shù)列{an}中,a1=1,an+1=2an+1
(I)求證數(shù)列{an+1}是等比數(shù)列;
(II)設cn=n•(an+1),求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.若α,β∈(0,$\frac{π}{2}$),sin($\frac{α}{2}-β$)=-$\frac{1}{2}$,cos($α-\frac{β}{2}$)=$\frac{{\sqrt{3}}}{2}$,則α+β=$\frac{2π}{3}$.

查看答案和解析>>

同步練習冊答案