14.若圓x2+y2=m與圓x2+y2+6x-8y-11=0相切,則實(shí)數(shù)m的值為1或121.

分析 由題意,兩個(gè)圓相內(nèi)切,根據(jù)兩圓的圓心距等于兩圓的半徑之差的絕對(duì)值,求得m的值.

解答 解:圓x2+y2+6x-8y-11=0 即(x+3)2+(y-4)2=36,
表示以(-3,4)為圓心,半徑等于6的圓.
由題意,兩個(gè)圓相內(nèi)切,兩圓的圓心距等于半徑之差的絕對(duì)值,
可得 $\sqrt{(-3-0)^{2}+(4-0)^{2}}$=|6-$\sqrt{m}$|,
解得m=1或121.
故答案為:1或121.

點(diǎn)評(píng) 本題主要考查圓的標(biāo)準(zhǔn)方程的特征,兩點(diǎn)間的距離公式,兩圓的位置關(guān)系的判定方法,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知二次函數(shù)f(x)=x2-2x,求函數(shù)y=f(x)在下列區(qū)間上的值域:
(1)x∈R;(2)x∈[-1,0];
(3)x∈[2,4];(4)x∈[-1,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知△ABC中,cosA=$\frac{12}{13}$,cosB=$\frac{3}{5}$,求sinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.某工廠生產(chǎn)A,B,C三種不同型號(hào)的產(chǎn)品,產(chǎn)品數(shù)量之比為2:3:5,現(xiàn)用分層抽樣的方法抽取容量為n的樣本,樣本中A型號(hào)產(chǎn)品有14件,則樣本容量n為( 。
A.65B.70C.75D.80

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在邊長(zhǎng)為1的菱形ABCD中,∠ABC=60°,將菱形沿對(duì)角線AC折起,使折起后BD=1,則二面角B-AC-D的平面角的余弦值$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列函數(shù)中,定義域是R且為增函數(shù)的是( 。
A.y=(x-1)2B.y=x3C.y=$\frac{1}{x}$D.y=|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,△ABC中∠A=90°,D,E分別為邊AB,AC上的點(diǎn),且不與△ABC的頂點(diǎn)重合.已知AE的長(zhǎng)為m,AC的長(zhǎng)為n,AD,AB的長(zhǎng)是關(guān)于x的方程x2-14x+mn=0的兩個(gè)根.
(1)證明:C、B、D、E四點(diǎn)共圓;
(2)若m=4,n=6,求C、B、D、E所在圓的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知三角形ABC中,$\overrightarrow{AB}$=(x1,y1),$\overrightarrow{AC}$=(x2,y2).求三角形ABC的面積S△ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在直三棱柱ABC-A1B1C1中,AB=BC=AC=AA1=1,D是BC的中點(diǎn).
(1)求證:AD⊥平面B1C1CB;
(2)求二面角A1-BC-A的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案