9.在平面直角坐標(biāo)系中,定義d(P,Q)=|x1-x2|+|y1-y2|為兩點(diǎn)P(x1,y1),Q(x2,y2),之間的“折線距離”.在這個(gè)定義下,給出下列命題:
①到原點(diǎn)的“折線距離”等于1的點(diǎn)的集合是一個(gè)正方形;
②到原點(diǎn)的“折線距離”等于1的點(diǎn)的集合是一個(gè)圓;
③到M(-1,0),N(1,0)兩點(diǎn)的“折線距離”之和為4的點(diǎn)的集合是面積為6的六邊形;
④到M(-1,0),N(1,0)兩點(diǎn)的“折線距離”差的絕對(duì)值為1的點(diǎn)的集合是兩條平行線.
其中正確的命題是①③④.(寫(xiě)出所有正確命題的序號(hào))

分析 先根據(jù)折線距離的定義分別表示出所求的集合,然后根據(jù)集合中絕對(duì)值的性質(zhì)進(jìn)行判定即可.

解答 解:到原點(diǎn)的“折線距離”等于1的點(diǎn)的集合{(x,y)||x|+|y|=1},是一個(gè)正方形,故①正確,②錯(cuò)誤;
到M(-1,0),N(1,0)兩點(diǎn)的“折線距離”之和為4的點(diǎn)的集合是{(x,y)||x+1|+|y|+|x-1|+|y|=4},故集合是面積為6的六邊形,則③正確;
到M(-1,0),N(1,0)兩點(diǎn)的“折線距離”差的絕對(duì)值為1的點(diǎn)的集合{(x,y)||x+1|+|y|-|x-1|-|y|=±1}={(x,y)||x+1|-|x-1|=±1},化簡(jiǎn)得x=±$\frac{1}{2}$(-1<x<1),故集合是兩條平行線;
故答案為:①③④.

點(diǎn)評(píng) 本題考查點(diǎn)的軌跡問(wèn)題,考查了“折線距離”的定義,以及分析問(wèn)題解決問(wèn)題的能力,信息給予題首先要理解清楚所給的信息的含義.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知a=30.4,b=ln2,c=log20.7,那么a,b,c的大小關(guān)系為(  )
A.a>b>cB.b>a>cC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.下列函數(shù)中,最小值為2的(  )
A.y=x+$\frac{1}{x}$B.y=$\sqrt{{x}^{2}+5}$+$\frac{1}{\sqrt{{x}^{2}+5}}$
C.y=$\frac{sinx}{2}$+$\frac{2}{sinx}$(0<x<π)D.y=logab+logba(a>1,b>1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.“a=1”是“函數(shù)f(x)=x2-2ax+b在區(qū)間[1,+∞)上為增函數(shù)”的( 。
A.既不充分也不必要條件B.必要不充分條件
C.充要條件D.充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.不等式$\frac{6}{x+1}$≥1成立的一個(gè)充分不必要條件是(  )
A.-2<x<6B.-1<x≤5C.-2<x<-1D.-1<x<5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知定義在(0,+∞)上的函數(shù)f(x),滿足f(mn)=f(m)+f(n)(m,n>0),且當(dāng)x>1時(shí),有f(x)>0.
①求證:f($\frac{m}{n}$)=f(m)-f(n);
②求證:f(x)在(0,+∞)上是增函數(shù);
③比較f($\frac{m+n}{2}$)與$\frac{f(m)+f(n)}{2}$的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.(文)已知指數(shù)函數(shù)y=f(x)的圖象過(guò)點(diǎn)(2,4),若f(m)=16,則m=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)f(x)=$\left\{\begin{array}{l}{{x}^{2}+4x+6(x≤0)}\\{-x+6(x>0)}\end{array}\right.$,則不等式f(x)<f(-1)的解集是( 。
A.(-3,-1)∪(3,+∞)B.(-3,-1)∪(2,+∞)C.(-3,+∞)D.(-∞,-3)(-1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.i是虛數(shù)單位,$\frac{5i}{2-i}$的虛部為( 。
A.2B.-2C.2iD.-2i

查看答案和解析>>

同步練習(xí)冊(cè)答案