10.集合{x∈N*|x-3<2}用列舉法可表示為(  )
A.{x<5}B.{1,2,3,4}C.{0,1,2,3,4,5}D.{1,2,3,4,5}

分析 先化簡不等式x-3<2,x為x<5,又x∈N*,則集合表示大于0 小于等于5的自然數(shù)

解答 解:{x∈N*|x-3<2}={x|{x∈N*|x<5}={1,2,3,4},
故選B.

點評 考查描述法表示集合,列舉法表示集合,以及自然數(shù)集

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

20.設Sn是等差數(shù)列{an}的前n項和,且S5<S6=S7>S8,則下列結論錯誤的是( 。
A.d<0B.a7=0
C.S${\;}_{{9}_{\;}}$>S5D.S6和S7均為Sn的最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.不等式組$\left\{\begin{array}{l}{-2x≤x+6}\\{7-x>1}\end{array}\right.$的整數(shù)解解集為{-2,-1,0,1,2,3,4,5};
不等式x2-1<3的解用區(qū)間表示為(-2,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.能夠保證直線a∥平面β的條件是( 。
A.b?β,a∥bB.a∥b∥c,b?β,c?β
C.a?β,b?β,a∥bD.b?β,A、B∈a,C、D∈b,AC=BD

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知x0(0<x0<1)是函數(shù)f(x)=lnx-$\frac{1}{x-1}$的一個零點,若a∈(0,x0),b∈(x0,1)則( 。
A.f(a)<0,f(b)<0B.f(a)>0,f(b)>0C.f(a)<0,f(b)>0D.f(a)>0,f(b)<0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知奇函數(shù)f(x)的定義域為(-∞,0)∪(0,+∞),當x>0時,f(x)=ln(|x-1|+1),則函數(shù)f(x)的圖象大致為( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.(1)已知集合A={x|ax2-3x+1=0,a∈R},若A中只有一個元素,求a的取值范圍.
(2)集合A={x|x2-6x+5<0},C={x|3a-2<x<4a-3},若C⊆A,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.設等比數(shù)列{an}的前n項和為Sn,且S3=$\frac{7}{3}$,a2=$\frac{2}{3}$,a1<a2,則數(shù)列{nan}的前n項和為Tn=$\frac{(n-1)•{2}^{n}+1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知a>b>0,橢圓C1的方程為$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1,雙曲線C2的方程為$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1,C1與C2的離心率之積為$\frac{{\sqrt{3}}}{2}$,則C1的離心率為( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{4}$D.$\frac{{\sqrt{6}}}{4}$

查看答案和解析>>

同步練習冊答案