已知a,b,c都是正數(shù),且a,b,c成等比數(shù)列,求證:a2+b2+c2>(a-b+c)2
分析:左邊減去右邊等于2(ab+bc-ac ),用等比數(shù)列的定義以及基本不等式可得 a+c>b,進(jìn)而推出2(ab+bc-ac )>0,
從而證得不等式成立.
解答:證明:∵a2+b2+c2 -(a-b+c)2=2(ab+bc-ac ).
∵a,b,c都是正數(shù),且a,b,c成等比數(shù)列,∴b2 =ac≤(
a+c
2
)
2
,
開方可得
a+c
2
b2
,故 a+c≥2b>b.
∴2(ab+bc-ac )=2(ab+bc-b2 )=2b(a+c-b)>0,
∴a2+b2+c2 -(a-b+c)2>0,∴a2+b2+c2>(a-b+c)2
點(diǎn)評:本題主要考查基本不等式的應(yīng)用,等比數(shù)列的定義和性質(zhì),用比較法證明不等式,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•許昌三模)已知a、b、c都是正整數(shù)且abc=8,求證:log2(2+a)+log2(2+b)+log2(2+c)≥6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c都是正實(shí)數(shù),求證(1)
a2
b
≥2a-b,(2)
a2
b
+
b2
c
+
c2
a
≥a+b+c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c都是正實(shí)數(shù),且滿足log4(16a+b)=log2
ab
,則使4a+b≥c恒成立的c的取值范圍是
(0,36]
(0,36]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-5:不等式選講
(Ⅰ)已知x,y都是正實(shí)數(shù),求證:x3+y3≥x2y+xy2;
(Ⅱ)已知a,b,c都是正實(shí)數(shù),求證:a3+b3+c3
13
(a2+b2+c2)(a+b+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河南省鄭州市新密二高高三(上)周練數(shù)學(xué)試卷3(理科)(解析版) 題型:解答題

已知a、b、c都是正整數(shù)且abc=8,求證:log2(2+a)+log2(2+b)+log2(2+c)≥6.

查看答案和解析>>

同步練習(xí)冊答案