【題目】在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的參數(shù)方程為 (t為參數(shù)),曲線C1的方程為ρ(ρ-4sin θ)=12,定點(diǎn)A(6,0),點(diǎn)P是曲線C1上的動點(diǎn),Q為AP的中點(diǎn).
(1)求點(diǎn)Q的軌跡C2的直角坐標(biāo)方程;
(2)直線l與直線C2交于A,B兩點(diǎn),若|AB|≥2,求實(shí)數(shù)a的取值范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)在處取最小值.
(1)求的值,并化簡 ;
(2)在ABC中,分別是角A,B, C的對邊,已知,求角C.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某少數(shù)民族的刺繡有著悠久的歷史,如圖(1),(2),(3),(4)為最簡單的四個圖案,這些圖案都是由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮.現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第個圖形包含個小正方形.
(1)求出的值;
(2)利用合情推理的“歸納推理思想”,歸納出與之間的關(guān)系式,并根據(jù)你得到的關(guān)系式求出的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在上是增函數(shù),求實(shí)數(shù)的取值范圍;
(2)若函數(shù)在上的最小值為3,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C:ρsin2θ=2acos θ(a>0),過點(diǎn)P(-2,-4)的直線l: (t為參數(shù))與曲線C相交于M,N兩點(diǎn).
(1)求曲線C的直角坐標(biāo)方程和直線l的普通方程;
(2)若|PM|,|MN|,|PN|成等比數(shù)列,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱柱中,底面是矩形,且, , ,若為的中點(diǎn),且.
(Ⅰ)求證: 平面;
(Ⅱ)線段上是否存在一點(diǎn),使得二面角的大小為?若存在,求出的長;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分13分) 已知橢圓經(jīng)過點(diǎn),離心率為,過點(diǎn)的直線與橢圓交于不同的兩點(diǎn).
(1)求橢圓的方程;
(2)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某區(qū)工商局、消費(fèi)者協(xié)會在月號舉行了以“攜手共治,暢享消費(fèi)”為主題的大型宣傳咨詢服務(wù)活動,著力提升消費(fèi)者維權(quán)意識.組織方從參加活動的群眾中隨機(jī)抽取名群眾,按他們的年齡分組:第組,第組,第組,第組,第組,得到的頻率分布直方圖如圖所示.
(Ⅰ)若電視臺記者要從抽取的群眾中選人進(jìn)行采訪,求被采訪人恰好在第組或第組的概率;
(Ⅱ)已知第組群眾中男性有人,組織方要從第組中隨機(jī)抽取名群眾組成維權(quán)志愿者服務(wù)隊(duì),求至少有兩名女性的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com