【題目】在直角坐標系中,以原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線C:ρsin2θ=2acos θ(a>0),過點P(-2,-4)的直線l: (t為參數(shù))與曲線C相交于M,N兩點.
(1)求曲線C的直角坐標方程和直線l的普通方程;
(2)若|PM|,|MN|,|PN|成等比數(shù)列,求實數(shù)a的值.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求和函數(shù)的極值;
(2)若關于的方程有3個不同實根,求實數(shù)的取值范圍;
(3)直線為曲線的切線,且經(jīng)過原點,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有一個食品商店為了調(diào)查氣溫對熱飲銷售的影響,經(jīng)過調(diào)查得到關于賣出的熱飲杯數(shù)與當天氣溫的數(shù)據(jù)如下表,繪出散點圖如下.通過計算,可以得到對應的回歸方程=-2.352x+147.767,根據(jù)以上信息,判斷下列結(jié)論中正確的是( )
攝氏溫度 | -5 | 0 | 4 | 7 | 12 | 15 | 19 | 23 | 27 | 31 | 36 |
熱飲杯數(shù) | 156 | 150 | 132 | 128 | 130 | 116 | 104 | 89 | 93 | 76 | 54 |
A.氣溫與熱飲的銷售杯數(shù)之間成正相關
B.當天氣溫為2℃時,這天大約可以賣出143杯熱飲
C.當天氣溫為10℃時,這天恰賣出124杯熱飲
D.由于x=0時,的值與調(diào)查數(shù)據(jù)不符,故氣溫與賣出熱飲杯數(shù)不存在線性相關性
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠的甲、乙兩個車間的名工人進行了勞動技能大比拼,規(guī)定:技能成績大于或等于分為優(yōu)秀, 分以下為非優(yōu)秀,統(tǒng)計成成績后,得到如下的列聯(lián)表,且已知在甲、乙兩個車間工人中隨機抽取人為優(yōu)秀的概率為.
優(yōu)秀 | 非優(yōu)秀 | 合計 | |
甲車間 | |||
乙車間 | |||
合計 |
(1)請完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按的可靠性要求,能否認為“成績與車間有關系”?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,以O為極點,x軸正半軸為極軸建立極坐標系,直線l的參數(shù)方程為 (t為參數(shù)),曲線C1的方程為ρ(ρ-4sin θ)=12,定點A(6,0),點P是曲線C1上的動點,Q為AP的中點.
(1)求點Q的軌跡C2的直角坐標方程;
(2)直線l與直線C2交于A,B兩點,若|AB|≥2,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=m-|x-1|-|x-2|,m∈R,且f(x+1)≥0的解集為[0,1].
(1)求m的值;
(2)若a,b,c,x,y,z∈R,且x2+y2+z2=a2+b2+c2=m,求證:ax+by+cz≤1.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某省兩相近重要城市之間人員交流頻繁,為了緩解交通壓力,特修一條專用鐵路,用一列火車作為交通車,已知該車每次拖4節(jié)車廂,一日能來回16次,如果每次拖7節(jié)車廂,則每日能來回10次.
(1)若每日來回的次數(shù)是車頭每次拖掛車廂節(jié)數(shù)的一次函數(shù),求此一次函數(shù)解析式:
(2)在(1)的條件下,每節(jié)車廂能載乘客110人.問這列火車每天來回多少次才能使運營人數(shù)最多?并求出每天最多運營人數(shù)。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形是正方形, 平面, 分別為的中點,且.
(1)求證:平面平面;
(2)求證:平面平面;
(3)求三棱錐與四棱錐的體積之比.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com