【題目】設(shè)函數(shù)處取最小值.

(1)的值,并化簡

(2)ABC中,分別是角A,B, C的對邊,已知,求角C.

【答案】(1)(2)

【解析】

試題分析:(1)利用三角函數(shù)公式可將函數(shù)式化簡,由處取最小值可求得的值,進而得到函數(shù)解析式;(2)由可得到A角,結(jié)合正弦定理可求得B角大小,由三角形內(nèi)角和可求得C角大小

試題解析:1 1分

…… 2分

因為函數(shù)f (x)在處取最小值,所以,(3分)由誘導(dǎo)公式知,

因為,所以.(4分) 所以 …… 5分

2)因為,所以,因為角A為ABC的內(nèi)角,所以. 6分

又因為所以由正弦定理,得,

也就是, …… 8分

因為,所以. …… 10分(對1個1分)

時,; …… 11分

時,. …… 12分

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)

(Ⅰ)若在其定義域內(nèi)為單調(diào)遞增函數(shù),求實數(shù)的取值范圍;

(Ⅱ)設(shè),且,若在[1,e]上至少存在一點,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) 為自然對數(shù)的底數(shù)).

(1)若函數(shù)的圖象在處的切線方程為,求 的值;

(2)若時,函數(shù)內(nèi)是增函數(shù),求的取值范圍;

(3)當時,設(shè)函數(shù)的圖象與函數(shù)的圖象交于點、,過線段的中點軸的垂線分別交、于點、,問是否存在點,使處的切線與處的切線平行?若存在,求出的橫坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)全集為R,集合A={x2,2x1,4},B={x5,1x,9}.

(1若x=3,求;

(2,求AB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知

(1)當時,求的值域;

(2)若b為正實數(shù),的最大值為M,最小值為m,且滿足,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2+bx為偶函數(shù),數(shù)列{an}滿足an+12f(an-1)+1,且a1=3,an>1.

(1)設(shè)bn=log2(an-1),證明:數(shù)列{bn+1}為等比數(shù)列;

(2)設(shè)cn=nbn,求數(shù)列{cn}的前n項和Sn.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個正方體的平面展開圖及該正方體直觀圖的示意圖如圖所示,在正方體中,設(shè)BC的中點為M,GH的中點為N。

(1)請將字母F,G,H標記在正方體相應(yīng)的頂點處(不需說明理由);

(2)證明:直線MN∥平面BDH;

(3)過點M,N,H的平面將正方體分割為兩部分,求這兩部分的體積比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地有10個著名景點,其中8 個為日游景點,2個為夜游景點.某旅行團要從這10個景點中選5個作為二日游的旅游地.行程安排為第一天上午、下午、晚上各一個景點,第二天上午、下午各一個景點.

(1)甲、乙兩個日游景點至少選1個的不同排法有多少種?

(2)甲、乙兩日游景點在同一天游玩的不同排法有多少種?

(3)甲、乙兩日游景點不同時被選,共有多少種不同排法?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,以O(shè)為極點,x軸正半軸為極軸建立極坐標系,直線l的參數(shù)方程為 (t為參數(shù)),曲線C1的方程為ρ(ρ-4sin θ)=12,定點A(6,0),點P是曲線C1上的動點,Q為AP的中點.

(1)求點Q的軌跡C2的直角坐標方程;

(2)直線l與直線C2交于A,B兩點,若|AB|≥2,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案