A. | $\frac{1}{2}$ | B. | $\frac{3}{4}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{3}$ |
分析 求出滿足sinx+cosx∈[1,$\sqrt{2}$]的區(qū)間寬度,代入幾何概型概率計(jì)算公式,可得答案.
解答 解:因?yàn)閟inx+cosx=$\sqrt{2}$($\frac{\sqrt{2}}{2}$sinx+$\frac{\sqrt{2}}{2}$cosx)
所以$sinx+cosx=\sqrt{2}sin(x+\frac{π}{4})∈[{1,\sqrt{2}}]$,
所以$sin(x+\frac{π}{4})∈[{\frac{{\sqrt{2}}}{2},1}]$,
因?yàn)閤∈[-$\frac{π}{6}$,$\frac{π}{2}$],所以x+$\frac{π}{4}$∈[$\frac{π}{12}$,$\frac{3π}{4}$],
因?yàn)?sin(x+\frac{π}{4})∈[{\frac{{\sqrt{2}}}{2},1}]$,
所以$x∈[{0,\frac{π}{2}}]$,
所以$P=\frac{{\frac{π}{2}}}{{\frac{2π}{3}}}=\frac{3}{4}$.
故選:B.
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是幾何概型,計(jì)算出滿足sinx+cosx∈[1,$\sqrt{2}$]的區(qū)間寬度,是解答的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充要條件 | B. | 充分不必要條件 | ||
C. | 必要不充分條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com