A. | $({-3,1,\sqrt{6}})$和$({3,-1,-\sqrt{6}})$ | B. | $({-\frac{3}{4},\frac{1}{4},\frac{{\sqrt{6}}}{4}})$ | ||
C. | $({-\frac{3}{4},\frac{1}{4},\frac{{\sqrt{6}}}{4}})$和$({\frac{3}{4},-\frac{1}{4},-\frac{{\sqrt{6}}}{4}})$ | D. | $({3,-1,-\sqrt{6}})$ |
分析 求出向量$\overrightarrow{a}$的模|$\overrightarrow{a}$|,得出與向量$\overrightarrow{a}$共線的單位向量是±$\frac{\overrightarrow{a}}{|\overrightarrow{a}|}$.
解答 解:向量$\overrightarrow{a}$的模為:|$\overrightarrow{a}$|=$\sqrt{{(-3)}^{2}{+1}^{2}{+(\sqrt{6})}^{2}}$=4,
故與向量$\overrightarrow{a}$共線的單位向量是
±$\frac{\overrightarrow{a}}{|\overrightarrow{a}|}$=±$\frac{1}{4}$(-3,1,$\sqrt{6}$)=±(-$\frac{3}{4}$,$\frac{1}{4}$,$\frac{\sqrt{6}}{4}$);
即(-$\frac{3}{4}$,$\frac{1}{4}$,$\frac{\sqrt{6}}{4}$)或($\frac{3}{4}$,-$\frac{1}{4}$,-$\frac{\sqrt{6}}{4}$).
故選:C.
點評 本題主要考查了兩個向量的共線定理,單位向量的定義和求法,是基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | -$\frac{3}{5}$ | C. | $\frac{4}{5}$ | D. | -$\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 減函數(shù) | B. | 增函數(shù) | C. | 奇函數(shù) | D. | 偶函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(1,\frac{{\sqrt{3}}}{3})$ | B. | $(1,\frac{{2\sqrt{3}}}{3})$ | C. | $(\frac{{\sqrt{3}}}{3},1)$ | D. | $(\frac{{2\sqrt{3}}}{3},1)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 0 | C. | 0或2 | D. | 以上都不對 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{1}{4}$ | D. | 0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com