【題目】已知曲線C上的動(dòng)點(diǎn)P)滿足到定點(diǎn)A(-1,0)的距離與到定點(diǎn)B1,0)距離之比為

(1)求曲線C的方程。

(2)過點(diǎn)M(1,2)的直線與曲線C交于兩點(diǎn)MN,若|MN|=4,求直線的方程。

【答案】1(或);(2.

【解析】

試題分析:(1)根據(jù)動(dòng)點(diǎn)Px,y)滿足到定點(diǎn)A-1,0)的距離與到定點(diǎn)B1,0)距離之比,建立方程,化簡(jiǎn)可得曲線C的方程.

2)分類討論,設(shè)出直線方程,求出圓心到直線的距離,利用勾股定理,即可求得直線l的方程.

試題解析:(1)由題意得|PA|=|PB| 2;

3;

化簡(jiǎn)得:(或)即為所求。 5;

2)當(dāng)直線的斜率不存在時(shí),直線的方程為,

代入方程,

所以|MN|=4,滿足題意。 8;

當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為+2

由圓心到直線的距離10;

解得,此時(shí)直線的方程為

綜上所述,滿足題意的直線的方程為:。 12.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知圓, 為拋物線上的動(dòng)點(diǎn),過點(diǎn)作圓的兩條切線與軸交于

(1)若,求過點(diǎn)的圓的切線方程;

(2)若,求△面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】記Sn為等比數(shù)列{an}的前n項(xiàng)和.已知S2=2,S3=﹣6.(12分)
(1)求{an}的通項(xiàng)公式;
(2)求Sn , 并判斷Sn+1 , Sn , Sn+2是否能成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線 ,點(diǎn)的左焦點(diǎn),點(diǎn)上位于第一象限內(nèi)的點(diǎn),關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,,,則的離心率為( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓的離心率為,過橢圓右焦點(diǎn)作兩條互相垂直的弦.當(dāng)直線斜率為0時(shí),

1)求橢圓的方程;

2)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)M在橢圓C: +y2=1上,過M做x軸的垂線,垂足為N,點(diǎn)P滿足 =
(Ⅰ)求點(diǎn)P的軌跡方程;
(Ⅱ)設(shè)點(diǎn)Q在直線x=﹣3上,且 =1.證明:過點(diǎn)P且垂直于OQ的直線l過C的左焦點(diǎn)F.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x﹣ ﹣1,g(x)=x+2x , h(x)=x+lnx,零點(diǎn)分別為x1 , x2 , x3 , 則(
A.x1<x2<x3
B.x2<x1<x3
C.x3<x1<x2
D.x2<x3<x1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABC-A1B1C1中,點(diǎn)M,N分別為線段A1B,B1C的中點(diǎn).

(1)求證:MN∥平面AA1C1C;

(2)若∠ABC=90°,AB=BC=2,AA1=3,求點(diǎn)B1到面A1BC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=e2x1(x2+ax﹣2a2+1).(a∈R)
(1)若a=1,求函數(shù)f(x)在(1,f(1))處的切線方程;
(2)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊(cè)答案