【題目】設(shè)集合 ,且A∩B=C,求實(shí)數(shù)x,y的值及A∪B.
【答案】解:由已知 , ,且A∩B=C,得7∈A,7∈B且-1∈B,
則在集合A中, .
解得x=-2或3.
當(dāng)x=-2時(shí),在集合B中,x+4=2.
又2∈A,故2∈(A∩B),又A∩B=C,故2∈C,
但2C,故x=-2不合題意,舍去.
當(dāng)x=3時(shí),在集合B中,x+4=7.
故有2y=-1,解得 .
經(jīng)檢驗(yàn),滿足A∩B=C.
綜上知,x=3, .
此時(shí), ,
故
【解析】由A∩B=C,說明集合A,B中都有集合C中的-1和7這兩個(gè)元素,對先求出的x的值進(jìn)行分類討論再求出y的值.
【考點(diǎn)精析】本題主要考查了元素與集合關(guān)系的判斷和集合的交集運(yùn)算的相關(guān)知識點(diǎn),需要掌握對象與集合的關(guān)系是,或者,兩者必居其一;交集的性質(zhì):(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,則AB,反之也成立才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐 的底面為正方形,側(cè)面 底面 , , 分別為 的中點(diǎn).
(1)求證: 面 ;
(2)求證:平面 平面 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了普及環(huán)保知識,增強(qiáng)環(huán)保意識,某大學(xué)隨機(jī)抽取30名學(xué)生參加環(huán)保知識測試,得分(十分制)如圖所示,假設(shè)得分值的中位數(shù)為me , 眾數(shù)為mO , 平均值為 ,則( )
A.me=mO=
B.me=mO<
C.me<mO<
D.mO<me<
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)訄A 經(jīng)過點(diǎn) , .
(1)求周長最小的圓的一般方程;
(2)求圓心在直線 上的圓的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】執(zhí)行如圖所示的程序框圖,數(shù)列{an}滿足an=n﹣1,輸入n=4,x=3,則輸出的結(jié)果v的值為( )
A.34
B.68
C.96
D.102
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax3﹣3x2+1,若f(x)存在唯一的零點(diǎn)x0 , 且x0>0,則a的取值范圍為( )
A.(﹣∞,﹣2)
B.(﹣∞,0)
C.(2,+∞)
D.(1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,函數(shù) .若函數(shù) 恰好有2個(gè)不同的零點(diǎn),則實(shí)數(shù) 的取值范圍是 ( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年高一新生入學(xué)后,為了了解新生學(xué)業(yè)水平,某區(qū)對新生進(jìn)行了水平測試,隨機(jī)抽取了50名新生的成績,其相關(guān)數(shù)據(jù)統(tǒng)計(jì)如下:
分?jǐn)?shù)段 | 頻數(shù) | 選擇題得分24分以上(含24分) |
[40,50) | 5 | 2 |
[50,60) | 10 | 4 |
[60,70) | 15 | 12 |
[70,80) | 10 | 6 |
[80,90) | 5 | 4 |
[90,100) | 5 | 5 |
(Ⅰ)若從分?jǐn)?shù)在[70,80),[80,90)的被調(diào)查的新生中各隨機(jī)選取2人進(jìn)行追蹤調(diào)查,求恰好有2名新生選擇題得分不足24分的概率;
(Ⅱ)在(Ⅰ)的條件下,記選中的4名新生中選擇題得分不足24分的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=alnx+b(a,b∈R),曲線f(x)在x=1處的切線方程為x﹣y﹣1=0.
(1)求a,b的值;
(2)證明:f(x)+ ≥1;
(3)已知滿足xlnx=1的常數(shù)為k.令函數(shù)g(x)=mex+f(x)(其中e是自然對數(shù)的底數(shù),e=2.71828…),若x=x0是g(x)的極值點(diǎn),且g(x)≤0恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com