10.設(shè)f(x),g(x)是定義域為R的恒大于零的可導(dǎo)函數(shù),且f'(x)•g(x)-f(x)•g′(x)<0,則當(dāng)a<x<b時,有( 。
A.f(x)•g(x)>f(b)•g(b)B.f(x)•g(a)>f(a)•g(x)C.f(x)•g(b)>f(b)•g(x)D.f(x)•g(x)>f(a)•g(a)

分析 令F(x)=$\frac{f(x)}{g(x)}$,可得F′(x)=$\frac{{f}^{′}(x)g(x)-f(x){g}^{′}(x)}{{g}^{2}(x)}$<0,x∈R.即可判斷出結(jié)論.

解答 解:令F(x)=$\frac{f(x)}{g(x)}$,則F′(x)=$\frac{{f}^{′}(x)g(x)-f(x){g}^{′}(x)}{{g}^{2}(x)}$<0,x∈R.
∴函數(shù)F(x)在(a,b)上單調(diào)遞減.
∴F(a)>F(b),即$\frac{f(x)}{g(x)}$>$\frac{f(b)}{g(b)}$,化為:f(x)g(b)>f(b)g(x).
故選:A.

點評 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值、分類討論方法、方程與不等式的解法,考查了推理能力與計算能力,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如果$|x|≤\frac{π}{4}$,那么函數(shù)f(x)=-cos2x+sinx的值域是( 。
A.$[\frac{{1-\sqrt{2}}}{2},\frac{{\sqrt{2}-1}}{2}]$B.$[-\frac{{\sqrt{2}+1}}{2},\frac{{\sqrt{2}-1}}{2}]$C.$[-\frac{5}{4},\frac{{\sqrt{2}+1}}{2}]$D.$[-\frac{5}{4},\frac{{\sqrt{2}-1}}{2}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)實數(shù)x,y滿足$\left\{\begin{array}{l}x+2y-4≤0\\ x-y≥0\\ y>0.\end{array}\right.$則x-2y的最大值為( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.過原點的直線與橢圓$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1交于A、B兩點,F(xiàn)1,F(xiàn)2為橢圓的焦點,則四邊形AF1BF2面積的最大值是8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知點A(-1,-1),B(1,1).線段AB是圓的直徑,則此圓的方程是x2+y2=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若雙曲線$\frac{x^2}{4}-\frac{y^2}=1(b>0)$的漸近線方程為$y=±\frac{1}{2}x$,則b等于(  )
A.4B.2C.1D.$\frac{{\sqrt{5}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=(a-1)lnx+ax2+1.
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若a≥l時,任意的x1>x2>0,總有|f(x1)-f(x2)|>2|x1-x2|,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖,空間四邊形OABC中,$\overrightarrow{OA}=\overrightarrow a$,$\overrightarrow{OB}=\overrightarrow b$,$\overrightarrow{OC}=\overrightarrow c$,點M在線段OA上,且OM=2MA,點N為BC的中點,則$\overrightarrow{MN}$=( 。
A.$\frac{1}{2}\overrightarrow a-\frac{2}{3}\overrightarrow b+\frac{1}{2}\overrightarrow c$B.$\frac{1}{2}\overrightarrow b+\frac{1}{2}\overrightarrow c-\frac{2}{3}\overrightarrow a$C.$\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b-\frac{1}{2}\overrightarrow c$D.$\frac{2}{3}\overrightarrow a+\frac{2}{3}\overrightarrow b-\frac{1}{2}\overrightarrow c$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.某年級舉行校園歌曲演唱比賽,七位評委為學(xué)生甲打出的演唱分數(shù)莖葉圖如圖所示,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的平均數(shù)為85.

查看答案和解析>>

同步練習(xí)冊答案