A. | 2 | B. | 4 | C. | 6 | D. | 8 |
分析 首先作出可行域,再作出直線l0:y=$\frac{1}{2}$x,將l0平移與可行域有公共點(diǎn),直線y=$\frac{1}{2}$x-$\frac{1}{2}$z在y軸上的截距最小時(shí),z有最大值,求出此時(shí)直線y=$\frac{1}{2}$x-$\frac{1}{2}$z經(jīng)過的可行域內(nèi)的點(diǎn)的坐標(biāo),代入z=x-2y中即可.
解答 解:如圖,作出可行域,
作出直線l0:y=$\frac{1}{2}$x,
將l0平移至過點(diǎn)A(4,0)處時(shí),直線y=$\frac{1}{2}$x-$\frac{1}{2}$z在y軸上的截距最小,函數(shù)z=x-2y有最大值4.
故選:B.
點(diǎn)評 本題考查線性規(guī)劃問題,考查數(shù)形結(jié)合思想,解答的步驟是有兩種方法:一種是:畫出可行域畫法,標(biāo)明函數(shù)幾何意義,得出最優(yōu)解.另一種方法是:由約束條件畫出可行域,求出可行域各個(gè)角點(diǎn)的坐標(biāo),將坐標(biāo)逐一代入目標(biāo)函數(shù),驗(yàn)證,求出最優(yōu)解.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1] | B. | (0,1) | C. | (2,3) | D. | [0,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)•g(x)>f(b)•g(b) | B. | f(x)•g(a)>f(a)•g(x) | C. | f(x)•g(b)>f(b)•g(x) | D. | f(x)•g(x)>f(a)•g(a) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0個(gè) | B. | 1個(gè) | C. | 2個(gè) | D. | 3個(gè) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com