分析 利用直線2ax-by+2=0(a>0,b>0)始終平分圓x2+y2+2x-4y+1=0的圓周,可得圓的圓心(-1,2)在直線2ax-by+2=0(a>0,b>0)上,再利用“1”的代換,結(jié)合基本不等式,即可求出$\frac{1}{a}$+$\frac{4}$的最小值.
解答 解:由題意,圓的圓心(-1,2)在直線2ax-by+2=0(a>0,b>0)上
∴-2a-2b+2=0(a>0,b>0)
∴a+b=1,
∴$\frac{1}{a}$+$\frac{4}$=(a+b)($\frac{1}{a}$+$\frac{4}$)=5+$\frac{a}$+$\frac{4a}$≥5+2$\sqrt{\frac{a}•\frac{4a}}$=9.
當(dāng)且僅當(dāng)$\frac{a}$=$\frac{4a}$,即a=$\frac{1}{3}$,b=$\frac{2}{3}$時,$\frac{1}{a}$+$\frac{4}$的最小值為9.
故答案為:9.
點評 本題考查圓的對稱性,考查基本不等式的運用,考查學(xué)生分析解決問題的能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0個 | B. | 1個 | C. | 1個或2個 | D. | 0個或1個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若x2+y2≠0,則x,y都不為0. | B. | 若x2+y2≠0,則x,y不都為0. | ||
C. | 若x2+y2≠0,則x≠0且y≠0 | D. | 若x2+y2≠0,則x=0且y=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<-1或a>3 | B. | -1<a<3 | C. | -1≤a≤3 | D. | a≤-1或a≥3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com