2.在半徑為1的圓上隨機(jī)地取兩點(diǎn),連成一條線,則其長(zhǎng)超過(guò)圓內(nèi)接等邊三角形的邊長(zhǎng)的概率是$\frac{1}{3}$.

分析 記事件A={弦長(zhǎng)超過(guò)圓內(nèi)接等邊三角形的邊長(zhǎng)},考查圓周和弧CD,測(cè)度為弧長(zhǎng),運(yùn)用幾何概型的計(jì)算公式,即可得到所求概率.

解答 解:記事件A={弦長(zhǎng)超過(guò)圓內(nèi)接等邊三角形的邊長(zhǎng)},
如圖,取圓內(nèi)接等邊三角形BCD的頂點(diǎn)B為弦的一個(gè)端點(diǎn),
當(dāng)另一點(diǎn)在劣弧CD上時(shí),|BE|>|BC|,
而弧CD的長(zhǎng)度是圓周長(zhǎng)的三分之一,
所以可用幾何概型求解,
有P(A)=$\frac{1}{3}$.
故答案為:$\frac{1}{3}$.

點(diǎn)評(píng) 本題考查幾何概型的應(yīng)用,注意選取兩個(gè)區(qū)域和測(cè)度,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=cos(2x+$\frac{π}{6}$)+cos(2x-$\frac{π}{6}$)-cos(2x+$\frac{π}{2}$)+1.
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞減區(qū)間;
(2)若將函數(shù)f(x)的圖象向左平移m(m>0)個(gè)單位后,得到的函數(shù)g(x)的圖象關(guān)于直線x=$\frac{π}{4}$軸對(duì)稱,求實(shí)數(shù)m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知b是實(shí)數(shù),則“b=2”是“3x+4y=b與圓x2+y2-2x-2y+1=0相切”的( 。
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.若點(diǎn)A(2,2)在矩陣M=$[{\begin{array}{l}{cosα}&{-sinα}\\{sinα}&{cosα}\end{array}}]$對(duì)應(yīng)變換的作用下得到的點(diǎn)為B(-2,2),則矩陣M的逆矩陣為$[\begin{array}{l}{0}&{1}\\{-1}&{0}\end{array}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知命題p:?x∈R,sinx>a,若¬p是真命題,則實(shí)數(shù)a的取值范圍為[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知A(2,5),B(4,-1)若在y軸上存在一點(diǎn)P,使|PA|+|PB|最小,則P點(diǎn)的坐標(biāo)為(0,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.如圖為一個(gè)幾何體的三視圖,正視圖和側(cè)視圖均為矩形,俯視圖中曲線部分為半圓,尺寸如圖,則該幾何體的體積為2+π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知焦點(diǎn)在x軸上的橢圓方程為$\frac{x^2}{4a}+\frac{y^2}{{{a^2}+1}}=1$,隨著a的增大該橢圓的形狀( 。
A.越接近于圓B.越扁
C.先接近于圓后越扁D.先越扁后接近于圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.利用定積分的幾何意義,計(jì)算$\int_1^2{\sqrt{4-{x^2}}}dx$等于(  )
A.2B.πC.$\frac{2π}{3}-\frac{{\sqrt{3}}}{2}$D.$\frac{2π}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案