A. | 越接近于圓 | B. | 越扁 | ||
C. | 先接近于圓后越扁 | D. | 先越扁后接近于圓 |
分析 首先根據(jù)橢圓成立的條件求出a的取值范圍,進(jìn)一步利用函數(shù)的單調(diào)性求出橢圓中的離心率的變化規(guī)律,最后確定結(jié)果.
解答 解:由$\frac{x^2}{4a}+\frac{y^2}{{{a^2}+1}}=1$,表示焦點(diǎn)在x軸上的橢圓,
∴$\left\{\begin{array}{l}{4a>0}\\{{a}^{2}+1>0}\\{4a>{a}^{2}+1}\end{array}\right.$,解得:2-$\sqrt{3}$<a<2+$\sqrt{3}$,
由于a在不斷的增大,所以對(duì)函數(shù)y=a2+1,(2-$\sqrt{3}$<a<2+$\sqrt{3}$)為單調(diào)遞增函數(shù),
即短軸中的b2在不斷增大.離心率e=$\sqrt{\frac{4a-{a}^{2}-1}{4a}}$,(2-$\sqrt{3}$<a<2+$\sqrt{3}$),
令f(a)=4a-a2-1,(2-$\sqrt{3}$<a<2+$\sqrt{3}$),
由二次函數(shù)性質(zhì)可知,(2-$\sqrt{3}$,2)單調(diào)遞增,(2,2+$\sqrt{3}$)單調(diào)遞減,
∴e隨著a的增加,先增加后減小,
∴隨著a的增大該橢圓先越扁后接近于圓,
故選:D.
點(diǎn)評(píng) 本題考查橢圓的標(biāo)準(zhǔn)方程,橢圓中a、b、c與橢圓離心率的關(guān)系及二次函數(shù)的性質(zhì)的應(yīng)用.屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\int_1^2{f(x)dx=28}$ | B. | $\int_2^3{f(x)dx=28}$ | ||
C. | $\int_1^2{2f(x)dx=56}$ | D. | $\int_1^2{f(x)dx+}\int_2^3{f(x)dx=56}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1-i | B. | 1+i | C. | 2+i | D. | 1-2i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 正三角形 | B. | 直角三角形 | C. | 等腰三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com