【題目】如圖,四棱柱中,平面ABCD,四邊形ABCD為平行四邊形,,.

1)若,求證://平面

2)若,且三棱錐的體積為,求.

【答案】1)見解析;(2

【解析】

1)連接于點(diǎn),連接,根據(jù)四邊形ABCD為平行四邊形,可得//,然后根據(jù)線面平行的判定定理,可得結(jié)果.

2)利用正弦定理,可得,進(jìn)一步可得,然后根據(jù),可得,最后利用勾股定理,可得結(jié)果.

1)連接于點(diǎn),連接.

如圖

由四棱柱的性質(zhì)可知//

,則//.

∵四邊形ABCD為平行四邊形,∴.

同理,∴,

∴四邊形為平行四邊形,∴//.

平面平面,

//平面.

2)∵,∴.

,∴.

由正弦定理可得,

解得,

,∴,

,即.

平面ABCD,即平面ABCD,

,CD,CA兩兩垂直.

,

,∴.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有一個長方形木塊,三個側(cè)面積分別為8,1224,現(xiàn)將其削成一個正四面體模型,則該正四面體模型棱長的最大值為(

A.2B.C.4D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市的公交公司為了方便市民出行,科學(xué)規(guī)劃車輛投放,在一個人員密集流動地段增設(shè)一個起點(diǎn)站,為了研究車輛發(fā)車間隔時間與乘客等候人數(shù)之間的關(guān)系,經(jīng)過調(diào)查得到如下數(shù)據(jù):

間隔時間(分鐘)

10

11

12

13

14

15

等候人數(shù)(人)

23

25

26

29

28

31

調(diào)查小組先從這6組數(shù)據(jù)中選取4組數(shù)據(jù)求線性回歸方程,再用剩下的2組數(shù)據(jù)進(jìn)行檢驗(yàn).檢驗(yàn)方法如下:先用求得的線性回歸方程計算間隔時間對應(yīng)的等候人數(shù),再求與實(shí)際等候人數(shù)的差,若差值的絕對值不超過1,則稱所求方程是恰當(dāng)回歸方程”.

1)若選取的是后面4組數(shù)據(jù),求關(guān)于的線性回歸方程;

2)判斷(1)中的方程是否是恰當(dāng)回歸方程

3)為了使等候的乘客不超過35人,試用(1)中方程估計間隔時間最多可以設(shè)置為多少(精確到整數(shù))分鐘?

附:對于一組數(shù)據(jù),,,其回歸直線的斜率和截距的最小二乘估計分別為: ,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場在一部向下運(yùn)行的手扶電梯終點(diǎn)的正上方豎直懸掛一幅廣告畫.如圖,該電梯的高米,它所占水平地面的長米.該廣告畫最高點(diǎn)到地面的距離為米,最低點(diǎn)到地面距離米.假設(shè)某人眼睛到腳底的距離米,他豎直站在此電梯上觀看視角為.

(Ⅰ設(shè)此人到直線的距離為米,試用含的表達(dá)式表示;

(Ⅱ此人到直線的距離為多少米時,視角最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了保障全國第四次經(jīng)濟(jì)普查順利進(jìn)行,國家統(tǒng)計局從東部選擇江蘇,從中部選擇河北. 湖北,從西部選擇寧夏,從直轄市中選擇重慶作為國家綜合試點(diǎn)地區(qū),然后再逐級確定普查區(qū)域,直到基層的普查小區(qū).在普查過程中首先要進(jìn)行宣傳培訓(xùn),然后確定對象,最后入戶登記.由于種種情況可能會導(dǎo)致入戶登記不夠順利,這為正式普查提供了寶貴的試點(diǎn)經(jīng)驗(yàn).在某普查小區(qū),共有 50 家企事業(yè)單位,150 家個體經(jīng)營戶,普查情況如下表所示:

普查對象類別

順利

不順利

合計

企事業(yè)單位

40

50

個體經(jīng)營戶

50

150

合計

1)寫出選擇 5 個國家綜合試點(diǎn)地區(qū)采用的抽樣方法;

2)補(bǔ)全上述列聯(lián)表(在答題卡填寫),并根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為“此普查小區(qū)的入戶登記是否順利與普查對象的類別有關(guān)”;

3)根據(jù)該試點(diǎn)普查小區(qū)的情況,為保障第四次經(jīng)濟(jì)普查的順利進(jìn)行,請你從統(tǒng)計的角度提出一條建議.

附:

0.10

0.010

0.001

2.706

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是函數(shù)的極值點(diǎn).

(Ⅰ)求實(shí)數(shù)的值;

(Ⅱ)求證:函數(shù)存在唯一的極小值點(diǎn),且.

(參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】淘汰落后產(chǎn)能,對生產(chǎn)設(shè)備進(jìn)行升級改造是企業(yè)生存發(fā)展的重要前提.某企業(yè)今年對舊生產(chǎn)設(shè)備的一半進(jìn)行了升級,剩下的一半在今后的兩年內(nèi)完成升級.為了分析新舊設(shè)備的生產(chǎn)質(zhì)量,從新舊設(shè)備生產(chǎn)的產(chǎn)品中各抽取了件作為樣本,對最重要的一項(xiàng)質(zhì)量指標(biāo)進(jìn)行檢測,該項(xiàng)質(zhì)量指標(biāo)值落在內(nèi)的產(chǎn)品為合格品,否則為不合格品.檢測數(shù)據(jù)如下:

1:日設(shè)備生產(chǎn)的產(chǎn)品樣本頻數(shù)分布表

質(zhì)量指標(biāo)

頻數(shù)

3

16

44

12

22

3

2:新設(shè)備生產(chǎn)的產(chǎn)品樣本頻數(shù)分布表

質(zhì)量指標(biāo)

頻數(shù)

1

20

52

16

10

1

1)根據(jù)表1和表2提供的數(shù)據(jù),試從產(chǎn)品合格率的角度對新舊設(shè)備的優(yōu)劣進(jìn)行比較;

2)面向市場銷售時,只有合格品才能銷售,這時需要對合格品的品質(zhì)進(jìn)行等級細(xì)分,質(zhì)量指標(biāo)落在內(nèi)的定為優(yōu)質(zhì)品,質(zhì)量指標(biāo)落在內(nèi)的定為一等品,其它的合格品定為二等品.完成下面的列聯(lián)表,并判斷是否有的把握認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標(biāo)值與新舊設(shè)備有關(guān);

舊設(shè)備

新設(shè)備

合計

優(yōu)質(zhì)品及一等品

二等品及不合格品

合計

/span>

3)優(yōu)質(zhì)品每件售價元,一等品每件售價元,二等品每件售價元根據(jù)表1和表2中的數(shù)據(jù),用該組樣本中優(yōu)質(zhì)品、一等品、二等品各自在合格品中的頻率代替從合格產(chǎn)品中抽到一件相應(yīng)等級產(chǎn)品的概率.現(xiàn)有一名顧客隨機(jī)購買兩件產(chǎn)品,設(shè)其支付的費(fèi)用為(單位:元),求的分布列和數(shù)學(xué)期望(結(jié)果保留整數(shù)).

附:

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本小題滿分12分,1小問5分,2小問7分

圖,橢圓的左、右焦點(diǎn)分別為的直線交橢圓于兩點(diǎn),且

1求橢圓的標(biāo)準(zhǔn)方程

2求橢圓的離心率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過點(diǎn)P(-4,0)的動直線l與拋物線相交于D、E兩點(diǎn),已知當(dāng)l的斜率為時,.

1)求拋物線C的方程;

2)設(shè)的中垂線在軸上的截距為,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案