8.如圖,F(xiàn)1,F(xiàn)2分別是雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦點,過F1的直線l與雙曲線分別交于點A,B,且A(1,$\sqrt{3}$),若△ABF2為等邊三角形,則△BF1F2的面積為( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

分析 根據(jù)雙曲線的定義算出△AF1F2中,|AF1|=2a,|AF2|=4a,由△ABF2是等邊三角形得∠F1AF2=120°,利用余弦定理算出c2=7a2,結(jié)合A(1,$\sqrt{3}$)在雙曲線上,即可得出結(jié)論.

解答 解:根據(jù)雙曲線的定義,可得|AF1|-|AF2|=2a,
∵△ABF2是等邊三角形,即|AF2|=|AB|
∴|BF1|=2a
又∵|BF2|-|BF1|=2a,
∴|BF2|=|BF1|+2a=4a,
∵△BF1F2中,|BF1|=2a,|BF2|=4a,∠F1BF2=120°
∴|F1F2|2=|BF1|2+|BF2|2-2|BF1|•|BF2|cos120°
即4c2=4a2+16a2-2×2a×4a×(-$\frac{1}{2}$)=28a2,
解得c2=7a2
∴b2=c2-a2=6a2,所以雙曲線方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{6{a}^{2}}$=1,
又A(1,$\sqrt{3}$),在雙曲線上,所以$\frac{1}{{a}^{2}}-\frac{3}{6{a}^{2}}$=1,解得a=$\frac{\sqrt{2}}{2}$.
所以△BF1F2的面積為$\frac{1}{2}×2a×4a×sin120°$=$2\sqrt{3}{a}^{2}$=$\sqrt{3}$,
故選C.

點評 本題主要考查雙曲線的定義和簡單幾何性質(zhì)等知識,根據(jù)條件求出a,b的關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)f(x)=x2-5x+6,x∈[-5,5],在定義域內(nèi)任取一點x0,使f(x0)≤0的概率是(  )
A.$\frac{1}{10}$B.$\frac{3}{5}$C.$\frac{3}{10}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.從拋物線y2=32x上各點向x軸作垂線,其垂線段中點的軌跡為E.
(Ⅰ)求軌跡E的方程;
(Ⅱ)已知直線l:y=k(x-2)(k>0)與軌跡E交于A,B兩點,且點F(2,0),若|AF|=2|BF|,求弦AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知向量$\overrightarrow{a}$=(m,-1),$\overrightarrow$=($\frac{1}{2},\frac{\sqrt{3}}{2}$)
(1)若m=-$\sqrt{3}$,求$\overrightarrow{a}$與$\overrightarrow$的夾角θ;
(2)設(shè)$\overrightarrow{a}⊥\overrightarrow$.
①求實數(shù)m的值;
②若存在非零實數(shù)k,t,使得[$\overrightarrow{a}$+(t2-3)$\overrightarrow$]⊥(-k$\overrightarrow{a}$+t$\overrightarrow$),求$\frac{k+{t}^{2}}{t}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.將向量$\overrightarrow{a_1}=({{x_1},{y_1}}),\overrightarrow{a_2}=({{x_2},{y_2}}),…\overrightarrow{a_n}=({{x_n},{y_n}})$組成的系列稱為向量列$\left\{{\overrightarrow{a_n}}\right\}$,并定義向量列$\left\{{\overrightarrow{a_n}}\right\}$的前n項和$\overrightarrow{S_n}=\overrightarrow{a_1}+\overrightarrow{a_2}+…+\overrightarrow{a_n}$.如果一個向量列從第二項起,每一項與前一項的差都是同一個向量,那么稱這樣的向量列為等差向量列,若向量列$\left\{{\overrightarrow{a_n}}\right\}$是等差向量列,那么下述向量中,與一定平行$\overrightarrow{{S}_{21}}$的向量是( 。
A.$\overrightarrow{{a_{10}}}$B.$\overrightarrow{{a_{11}}}$C.$\overrightarrow{{a_{20}}}$D.$\overrightarrow{{a_{21}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=x+cosx在[0,π]上的最小值為( 。
A.-2B.0C.-$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖所示的莖葉圖記錄了甲、乙兩組各5名同學(xué)的投籃命中次數(shù),乙組記錄中有一個數(shù)據(jù)模糊,無法確認(rèn),在圖中用x表示.
(1)若乙組同學(xué)投籃命中次數(shù)的平均數(shù)比甲組同學(xué)的平均數(shù)少1,求x及乙組同學(xué)投籃命中次數(shù)的方差;
(2)在(1)的條件下,分別從甲、乙兩組投籃命中次數(shù)低于10次的同學(xué)中,各隨機選取一名,求這兩名同學(xué)的投籃命中次數(shù)之和為16的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在數(shù)列{an}中,a1=2,2an+1-2an=1,則S12=57.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知冪函數(shù)f(x)=xα(α為常數(shù))的圖象過點$P({2,\frac{1}{2}})$,則f(x)的單調(diào)遞減區(qū)間是( 。
A.(-∞,0)B.(-∞,+∞)C.(-∞,0)∪(0,+∞)D.(-∞,0)與(0,+∞)

查看答案和解析>>

同步練習(xí)冊答案