分析 (Ⅰ)通過聯(lián)立a2=3、a4=7計算可知等差數(shù)列{an}的首項和公差,從而可得其通項公式;通過等比數(shù)列{bn}成公比大于1的等比數(shù)列可確定b1=1、b2=2、b3=4,進而可求出首項和公比,從而可得通項公式;
(Ⅱ)通過(I),利用分組求和法計算即得結(jié)論.
解答 解:(Ⅰ)設(shè)等差數(shù)列的首項和公差分別為a1、d,
∵a2=3,a4=7,
∴a1+d=3,a1+3d=7,
解得:a1=1,d=2,
∴an=1+2(n-1)=2n-1,
∵等比數(shù)列{bn}成公比大于1的等比數(shù)列且{b1,b2,b3}={1,2,4},
∴b1=1,b2=2,b3=4,
∴b1=1,q=2,
∴bn=2n-1;
(Ⅱ)由(I)可知Sn=(a1+a2+…+an)+(b1+b2+…+bn)
=$\frac{n(1+2n-1)}{2}$+$\frac{1-{2}^{n}}{1-2}$
=n2+2n-1.
點評 本題考查數(shù)列的通項及前n項和,考查分組求和法,注意解題方法的積累,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=cos(x+$\frac{π}{8}$) | B. | f(x)=sin2x-cos2x | C. | f(x)=sinxcosx | D. | f(x)=sin2x+cos2x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | q>0時,數(shù)列{bn}中的項都是正數(shù) | B. | 數(shù)列{an}中一定存在的為負數(shù)的項 | ||
C. | 數(shù)列{an}中至少有三項是正數(shù) | D. | 以上說法都不對 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com