18.閱讀下面的程序框圖,則輸出的結(jié)果是 (  )
A.1B.2C.3D.4

分析 分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是利用循環(huán)計(jì)算S值重新為2時(shí)變量n的值,并輸出,模擬程序的運(yùn)行過程,即可得到答案.

解答 解:模擬程序的運(yùn)行,可得:
S=2,n=1
執(zhí)行循環(huán)體,S=-1,n=2
不滿足條件S=2,執(zhí)行循環(huán)體,S=$\frac{1}{2}$,n=3
不滿足條件S=2,執(zhí)行循環(huán)體,S=2,n=4
滿足條件S=2,退出循環(huán),輸出n的值為4.
故選:D.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是程序框圖,在寫程序的運(yùn)行結(jié)果時(shí),模擬程序的運(yùn)行過程是解答此類問題最常用的辦法,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.甲、乙兩人隨意住兩間空房,則甲、乙兩人各住一間房的概率是0.5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.用秦九韶算法求多項(xiàng)式f(x)=1-5x-8x2+10x3+6x4+12x5+3x6當(dāng)x=-4時(shí)的值時(shí),v0,v1,v2,v3,v4中最大值與最小值的差是62.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知直線l過點(diǎn)P(2,1)
(1)點(diǎn)A(-1,3)和點(diǎn)B(3,1)到直線l的距離相等,求直線l的方程;
(2)若直線l與x正半軸、y正半軸分別交于A,B兩點(diǎn),且△ABO的面積為4,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知集合A={x∈R|0<ax+1≤5},B={x∈R|$\frac{1}{2}$<x+1≤2}(a≠0)
(1)A,B能否相等?若能,求出實(shí)數(shù)a的值;若不能,試說明理由;
(2)若命題p:x∈A,命題q:x∈B,且p是q充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.將8個(gè)半徑為1實(shí)心鐵球溶化成一個(gè)大球,則這個(gè)大球的半徑是(  )
A.8B.2$\sqrt{2}$C.2D.$\frac{\sqrt{2}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列函數(shù)中,最小值為2的是( 。
A.y=$\frac{1}{x}$+x (x<0)B.y=$\frac{1}{x}$+1 (x≥1)C.y=$\sqrt{x}$+$\frac{4}{\sqrt{x}}$-2  (x>0)D.y=$\sqrt{{x}^{2}+2}$+$\frac{1}{\sqrt{{x}^{2}+2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若f(lgx)=$\frac{x+1}{x-1}$,則f(2)=( 。
A.$\frac{101}{99}$B.3C.$\frac{99}{101}$D.$\frac{99}{100}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知fn(x)=xn+bx+c(n∈N*),b,c∈R.
(1)設(shè)n=2時(shí),若對任意x1,x2∈[-1,1],有|f2(x1)-f1(x2)|≤4,求b的取值范圍;
(2)當(dāng)b=1時(shí),c=-1,n≥2時(shí),fn(x)在區(qū)間($\frac{1}{2}$,1)內(nèi)存在唯一零點(diǎn)且單調(diào)遞增,設(shè)xn是fn(x)在($\frac{1}{2}$,1)內(nèi)的零點(diǎn),判斷數(shù)列x2,x3,…,xn,…的增減性.

查看答案和解析>>

同步練習(xí)冊答案