【題目】已知雙曲線的左右焦點分別為,以為圓心,為半徑的圓交的右支于兩點,若的一個內(nèi)角為,則的離心率為( )

A. B. C. D.

【答案】C

【解析】分析:由條件可知△PQF1為等邊三角形,從而可得出P點坐標,代入雙曲線方程化簡得出離心率.

詳解:設雙曲線方程為

由對稱性可知△PQF1為等腰三角形,

若△PQF2的一個內(nèi)角為60°,則△PQF1是等邊三角形,

∴△F1PQ的一個內(nèi)角為600°,

∴∠PF2Q=120°,設PQx軸于A,則|AF1|=|F1P|=c,|PA|=c,

不妨設P在第二象限,則P(﹣2c,c),

代入雙曲線方程可得:

a=1可得:4c4﹣8c2+1=0,

解得c2=1+c2=1﹣(舍).∴c=c=﹣(舍).

e=.

故答案為:C

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)在點處的切線方程是

(1)求實數(shù)的值.

(2)若方程有唯一實數(shù)解,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】ab是方程2lg2 xlg x410的兩個實根,求lg(ab 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在空間中,給出下列說法:①平行于同一個平面的兩條直線是平行直線;②垂直于同一條直線的兩個平面是平行平面;③若平面內(nèi)有不共線的三點到平面的距離相等,則;④過平面的一條斜線,有且只有一個平面與平面垂直.其中正確的是(

A. ①③B. ②④C. ①④D. ②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術》中“竹九節(jié)”問題:現(xiàn)有一根9節(jié)的竹子,自上而下各節(jié)的容積成等差數(shù)列,上面4節(jié)的容積共3升,下面3節(jié)的容積共4升,則第6節(jié)的容積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】汽車的燃油效率是指汽車每消耗1升汽油行駛的里程,下圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況. 下列敘述中正確的是( )

A. 消耗1升汽油,乙車最多可行駛5千米

B. 以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多

C. 甲車以80千米/小時的速度行駛1小時,消耗10升汽油

D. 某城市機動車最高限速80千米/小時. 相同條件下,在該市用丙車比用乙車更省油

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市出租車收費標準如下:起步價為8元,起步里程為3km(不超過3km按起步價付費);超過3km但不超過8km時,超過部分按每千米2.15元收費:超過8km時,超過部分按每千米2.85元收費,另每次乘坐需付燃油附加費1元.下列結論正確的是(

A.出租車行駛2km,乘客需付費8

B.出租車行駛4km,乘客需付費9.6

C.出租車行駛10km,乘客需付費25.45

D.某人乘出租車行駛5km兩次的費用超過他乘出租車行駛10km一次的費用

E.某人乘坐一次出租車付費22.6元,則此次出租車行駛了9km

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某租賃公司有750輛電動汽車供租賃使用,管理這些電動汽車的費用是每日元.根據(jù)調查發(fā)現(xiàn),若每輛電動汽車的日租金不超過90元,則電動汽車可以全部租出;若超過90元,則每超過1元,租不出去的電動汽車就增加3輛.設每輛電動汽車的日租金為元(),用(單位:元)表示出租電動汽車的日凈收入.(日凈收入等于日出租電動汽車的總收入減去日管理費用)

1)求關于的函數(shù)解析式;

2)試問當每輛電動汽車的日租金為多少元時?才能使日凈收入最多,并求出日凈收入的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某碼頭有總重量為噸的一批貨箱,對于每個貨箱重量都不超過噸的任何情況,都要一次運走這批貨箱,則至少需要準備載重噸的卡車( )

A.B.C.D.

查看答案和解析>>

同步練習冊答案