13.一個(gè)三角形的兩邊長(zhǎng)是方程2x2-$\sqrt{k}$x+2=0的兩根,第三邊長(zhǎng)為2,求實(shí)數(shù)k的取值范圍.

分析 先根據(jù)方程有兩個(gè)實(shí)數(shù)根求出k的取值范圍,再根據(jù)韋達(dá)定理求出x1+x2及x1x2的值,根據(jù)三角形的三邊關(guān)系即可得出結(jié)論.

解答 解:∵三角形的兩邊長(zhǎng)是方程2x2-$\sqrt{k}$x+2=0的兩個(gè)根,
∴△≥0,即△=(-$\sqrt{k}$)2-16≥0,解得k≥16.
∵x1+x2=$\frac{\sqrt{k}}{2}$>2,x1x2=1,|x1-x2|=$\sqrt{\frac{k}{4}-4}$<2,
∴16<k<32.
綜上所述,16<k<32.

點(diǎn)評(píng) 本題考查三角形中的幾何計(jì)算,考查韋達(dá)定理的運(yùn)用,考查構(gòu)成三角形條件的運(yùn)用,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=mx-$\frac{m-1+2e}{x}$-lnx,m∈R,e為自然對(duì)數(shù)的底數(shù),函數(shù)g(x)=$\frac{1}{xcosθ}$+lnx在區(qū)間[1,+∞)內(nèi)為增函數(shù),且θ∈(-$\frac{π}{2}$,$\frac{π}{2}$).
(1)當(dāng)m=0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(2)若當(dāng)x∈[1,e]時(shí),至少存在一個(gè)x0,使得f(x0)>g(x0)成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知D是面積為1的△ABC的邊AB的中點(diǎn),E是邊AC上任一點(diǎn),連接DE,F(xiàn)是線段DE上一點(diǎn),連接BF,設(shè)$\frac{DF}{DE}={λ_1}$,$\frac{AE}{AC}={λ}_{2}$,且${λ_1}+{λ_2}=\frac{1}{2}$,記△BDF的面積為S=f (λ1,λ2),則S的最大值是(  )
A.$\frac{1}{6}$B.$\frac{1}{25}$C.$\frac{1}{30}$D.$\frac{1}{32}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知sinα+3cosα=0,則2sin2α-cos2α=-$\frac{13}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,在四邊形ABDC中,CD=$\sqrt{3}$,∠ACB=75°,∠BCD=45°,∠ADC=30°,∠ADB=45°,求AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知集合A={m-1,3m,m2-1},且-1∈A.
(1)求實(shí)數(shù)m的值和集合A;
(2)解關(guān)于x的不等式$\frac{x(x-3m)}{x+6m}$≥0,并用集合表示.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知變量x,y滿足$\left\{\begin{array}{l}x+y-2≤0\\ x-y+1≤0\\ 2x-y+2≥0\end{array}\right.$,則$\frac{y}{x-3}$的取值范圍為( 。
A.[0,$\frac{2}{3}}$]B.[0,+∞)C.(-∞,$\frac{2}{3}}$]D.[-$\frac{2}{3}$,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.若x,y滿足約束條件$\left\{\begin{array}{l}x-5≤0\\ x+y-4≥0\\ 2x-y-5≥0\end{array}\right.$,則z=2x+y的最小值為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.復(fù)數(shù)z滿足:(3-4i)z=1+2i,則z=( 。
A.$-\frac{1}{5}+\frac{2}{5}i$B.$\frac{1}{5}-\frac{2}{5}i$C.$-\frac{1}{5}-\frac{2}{5}i$D.$\frac{1}{5}+\frac{2}{5}i$

查看答案和解析>>

同步練習(xí)冊(cè)答案