已知
tanα
tanα-1
=-1
,求下列各式的值:
(1)
sinα-3cosα
sinα+cosα
;
(2)sin2α+sinαcosα+3cos2α.
考點(diǎn):三角函數(shù)的化簡(jiǎn)求值
專題:三角函數(shù)的求值
分析:利用已知條件求出角的正切函數(shù)值,
(1)分子分母同除余弦函數(shù),得到正切函數(shù)形式求解即可.
(2)表達(dá)式的分母利用1的代換,化簡(jiǎn)為正切函數(shù)的形式,求解即可.
解答: 解:
tanα
tanα-1
=-1
,可得tanα=
1
2

(1)
sinα-3cosα
sinα+cosα
=
tanα-3
tanα+1
=
1
2
-3
1
2
+1
=-
5
3

(2)sin2α+sinαcosα+3cos2α=
sin2α+sinαcosα+3cos2α
sin2α+cos2α
=
tan2α+tanα+3
tan2α+1
=
1
4
+
1
2
+3
1
4
+1
=
15
5
=3.
點(diǎn)評(píng):本題考查三角函數(shù)化簡(jiǎn)求值,同角三角函數(shù)的基本關(guān)系式的應(yīng)用,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在線性約束條件
x-y≥0
3x-y-6≤0
x+y-2≥o
下,目標(biāo)函數(shù)z=2x+y的最小值是.( 。
A、9B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若α∈(0,2π),且sinα+cosα=-
7
5
,則tanα=( 。
A、±
3
4
B、
3
4
4
3
C、
4
3
D、±
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

cos(α-45°)cos(15°+α)+cos(α+45°)cos(105°+α)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求證:函數(shù)f(x)=lg(
x2+1
+x
)(x∈R)是奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)中,不是冪函數(shù)的是( 。
A、y=2x
B、y=x-1
C、y=
x
D、y=x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題:?x<0,0<2x<1,則¬p為( 。
A、?x<0,2x≤0或2x≥1
B、?x≥0,2x≤0或2x≥1
C、?x≥0,0<2x<1
D、?x<0,2x≤0或2x≥1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
9
+
y2
n
=1與雙曲線 
x2
4
-
y2
m
=1有相同的焦點(diǎn),則動(dòng)點(diǎn)P(n,m)的軌跡(  )
A、橢圓的一部分
B、雙曲線的一部分
C、拋物線的一部分
D、直線的一部分

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下圖是對(duì)數(shù)函數(shù)y=logax的圖象,已知a的值取
1
3
、
2
3
、2、5,則相應(yīng)于C1、C2、C3、C4的a的值依次是( 。
A、
1
3
、
2
3
、2、5
B、
1
3
、
2
3
、5、2
C、5、2、
1
3
、
2
3
D、5、2、
2
3
、
1
3

查看答案和解析>>

同步練習(xí)冊(cè)答案