若α∈(0,2π),且sinα+cosα=-
7
5
,則tanα=(  )
A、±
3
4
B、
3
4
4
3
C、
4
3
D、±
4
3
考點(diǎn):同角三角函數(shù)基本關(guān)系的運(yùn)用
專題:三角函數(shù)的求值
分析:已知等式兩邊平方,利用完全平方公式及同角三角函數(shù)間基本關(guān)系化簡求出2sinαcosα的值,再利用完全平方公式及同角三角函數(shù)間基本關(guān)系化簡,開方求出sinα-cosα的值,聯(lián)立求出sinα與cosα的值,即可求出tanα的值.
解答: 解:把sinα+cosα=-
7
5
①<0,兩邊平方得:(sinα+cosα)2=1+2sinαcosα=
49
25
,即2sinαcosα=
24
25
>0,
∵α∈(0,2π),
∴sinα<0,cosα<0,
∴(sinα-cosα)2=1-2sinαcosα=
1
25
,即sinα-cosα=
1
5
或-
1
5
②,
聯(lián)立①②,解得:sinα=-
3
5
,cosα=-
4
5
;sinα=-
4
5
,cosα=-
3
5
,
則tanα=
sinα
cosα
=
3
4
4
3
,
故選:B.
點(diǎn)評:此題考查了同角三角函數(shù)間的基本關(guān)系,熟練掌握基本關(guān)系是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

二元一次不等式組
x≤0
y≤0
x+y+3≥0
表示的平面區(qū)域的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給定:an=logn+1(n+2)(n∈N*),定義使a1.a(chǎn)2.a(chǎn)3ak為整數(shù)的數(shù)k(k∈N*)叫做數(shù)列{an}的“企盼數(shù)”,則區(qū)間[1,2013]內(nèi)所有“企盼數(shù)”的和為( 。
A、2026B、2024
C、2028D、2014

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
3
sinx+cosx的最小正周期為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)滿足f(x-1)=x2-x+1,則f(2)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}中,a1<0,Sn為前n項(xiàng)和,且S3=S16,則Sn取最小值時(shí),n的值為( 。
A、9B、10
C、9或10D、10或11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,前n項(xiàng)和為Sn,求
(1)已知a3=
3
2
,S3=
9
2
,求公比q及a1
(2)
a5-a1=15
a4-a2=6
,求a3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
tanα
tanα-1
=-1
,求下列各式的值:
(1)
sinα-3cosα
sinα+cosα
;
(2)sin2α+sinαcosα+3cos2α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是等差數(shù)列,若a9+a12>0,a10•a11<0,且數(shù)列{an}的前n項(xiàng)和Sn有最大值,那么當(dāng)Sn取得最小正值時(shí),n等于( 。
A、17B、19C、20D、21

查看答案和解析>>

同步練習(xí)冊答案