【題目】如圖,在四棱錐中,是等邊三角形,,,.

(Ⅰ)求證:

(Ⅱ)若平面 平面,,求二面角的余弦值

【答案】(1)見解析;(2).

【解析】分析:第一問要證明的是線線垂直,在做題的過程中,需要用到平面四邊形中平行四邊形的性質(zhì)以及勾股定理得到線線垂直,之后應(yīng)用線面垂直的判定定理得到線面垂直,之后應(yīng)用線面垂直的性質(zhì),得到線線垂直;第二問利用題中的條件,得到相應(yīng)的垂直關(guān)系,建立相應(yīng)的空間直角坐標(biāo)系,利用法向量求得二面角的余弦值.

詳解:(Ⅰ)取的中點(diǎn),連接

為等邊三角形

四邊形為矩形

, 平面

平面,

(Ⅱ)由(Ⅰ)知

平面平面,平面平面,平面

平面,

為坐標(biāo)原點(diǎn),以所在方向分別為軸,軸,軸的正方向,建立空間直角坐標(biāo)系

設(shè)

, ,

,得,

,,

,

設(shè)平面法向量

,得,取,得

又知是平面的一個(gè)法向量,設(shè)

二面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了探索一種新的教學(xué)模式,進(jìn)行了一項(xiàng)課題實(shí)驗(yàn),甲班為實(shí)驗(yàn)班,乙班為對(duì)比班,甲乙兩班的人數(shù)均為50人,一年后對(duì)兩班進(jìn)行測(cè)試,測(cè)試成績(jī)的分組區(qū)間為80,90、90,100、100,110、110,120、120,130,由此得到兩個(gè)班測(cè)試成績(jī)的頻率分布直方圖:

(1)完成下面2×2列聯(lián)表,你能有97.5的把握認(rèn)為“這兩個(gè)班在這次測(cè)試中成績(jī)的差異與實(shí)施課題實(shí)驗(yàn)有關(guān)”嗎?并說明理由;

成績(jī)小于100分

成績(jī)不小于100分

合計(jì)

甲班

50

乙班

50

合計(jì)

100

(2)根據(jù)所給數(shù)據(jù)可估計(jì)在這次測(cè)試中,甲班的平均分是105.8,請(qǐng)你估計(jì)乙班的平均分,并計(jì)算兩班平均分相差幾分?

附:

,其中

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5. 024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)上是減函數(shù),在上是增函數(shù)若函數(shù),利用上述性質(zhì),

當(dāng)時(shí),求的單調(diào)遞增區(qū)間只需判定單調(diào)區(qū)間,不需要證明

設(shè)在區(qū)間上最大值為,求的解析式;

若方程恰有四解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為加快新能源汽車產(chǎn)業(yè)發(fā)展,推進(jìn)節(jié)能減排,國(guó)家對(duì)消費(fèi)者購(gòu)買新能源汽車給予補(bǔ)貼,其中對(duì)純電動(dòng)乘用車補(bǔ)貼標(biāo)準(zhǔn)如下表:

新能源汽車補(bǔ)貼標(biāo)準(zhǔn)

車輛類型

續(xù)駛里程R(公里)

80≤R<150

150≤R<250

R≥250

純電動(dòng)乘用車

3.5萬元/輛

5萬元/輛

6萬元/輛

某校研究性學(xué)習(xí)小組,從汽車市場(chǎng)上隨機(jī)選取了M輛純電動(dòng)乘用車,根據(jù)其續(xù)駛里程R(單次充電后能行駛的最大里程)作出了頻率與頻數(shù)的統(tǒng)計(jì)表:

分組

頻數(shù)

頻率

80≤R<150

2

0.2

150≤R<250

5

x

R≥250

y

z

合計(jì)

M

1

(Ⅰ)求x,y,z,M的值;
(Ⅱ)若從這M輛純電動(dòng)乘用車中任選2輛,求選到的2輛車?yán)m(xù)駛里程都不低于150公里的概率;
(Ⅲ)若以頻率作為概率,設(shè)X為購(gòu)買一輛純電動(dòng)乘用車獲得的補(bǔ)貼,求X的分布列和數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2x+alnx(a∈R).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若函數(shù)f(x)有兩個(gè)極值點(diǎn)x1 , x2(x1<x2),且不等式f(x1)≥mx2恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是在豎直平面內(nèi)的一個(gè)“通道游戲”,圖中豎直線段和斜線段都表示通道,并且在交點(diǎn)處相通,假設(shè)一個(gè)小彈子在交點(diǎn)處向左或向右是等可能的.若豎直線段有一條的為第一層,有兩條的為第二層,……,依此類推,現(xiàn)有一顆小彈子從第一層的通道里向下運(yùn)動(dòng).則該小彈子落入第四層從左向右數(shù)第3個(gè)豎直通道的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四個(gè)小動(dòng)物換座位,開始是鼠、猴、兔、貓分別坐在 1,2,3,4 號(hào)位子上(如圖), 第一次前后排動(dòng)物互換座位,第二次左右列動(dòng)物互換座位,.....,這樣交替進(jìn)行下去,那么第 2013 次互換座位后,小兔的座位對(duì)應(yīng)的是( )

A. 編號(hào) 1 B. 編號(hào) 2 C. 編號(hào) 3 D. 編號(hào) 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)+1(A>0,ω>0,|φ|< ),圖象上有一個(gè)最低點(diǎn)是P(﹣ ,﹣1),對(duì)于f(x1)=1,f(x2)=3,|x1﹣x2|的最小值為 . (Ⅰ)若f(α+ )= ,且α為第三象限的角,求sinα+cosα的值;
(Ⅱ)討論y=f(x)+m在區(qū)間[0, ]上零點(diǎn)的情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)調(diào)查,某地區(qū)有300萬從事傳統(tǒng)農(nóng)業(yè)的農(nóng)民,人均年收入6000元,為了增加農(nóng)民的收入,當(dāng)?shù)卣e極引進(jìn)資本,建立各種加工企業(yè),對(duì)當(dāng)?shù)氐霓r(nóng)產(chǎn)品進(jìn)行深加工,同時(shí)吸收當(dāng)?shù)夭糠洲r(nóng)民進(jìn)入加工企業(yè)工作,據(jù)估計(jì),如果有萬人進(jìn)企業(yè)工作,那么剩下從事傳統(tǒng)農(nóng)業(yè)的農(nóng)民的人均年收入有望提高,而進(jìn)入企業(yè)工作的農(nóng)民的人均年收入為元.

1)在建立加工企業(yè)后,多少農(nóng)民進(jìn)入企業(yè)工作,能夠使剩下從事傳統(tǒng)農(nóng)業(yè)農(nóng)民的總收入最大,并求出最大值;

2)為了保證傳統(tǒng)農(nóng)業(yè)的順利進(jìn)行,限制農(nóng)民加入加工企業(yè)的人數(shù)不能超過總?cè)藬?shù)的,當(dāng)?shù)卣绾我龑?dǎo)農(nóng)民,即取何值時(shí),能使300萬農(nóng)民的年總收入最大.

查看答案和解析>>

同步練習(xí)冊(cè)答案